Loading…

A unified physical model of Seebeck coefficient in amorphous oxide semiconductor thin-film transistors

A unified physical model for Seebeck coefficient was presented based on the multiple-trapping and release theory for amorphous oxide semiconductor thin-film transistors. According to the proposed model, the Seebeck coefficient is attributed to the Fermi-Dirac statistics combined with the energy depe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2014-09, Vol.116 (10)
Main Authors: Lu, Nianduan, Li, Ling, Sun, Pengxiao, Banerjee, Writam, Liu, Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c257t-89d3e04fa60ff3c743d6a427029485b4a0f65f900eb2612ca69c26a8eac7d5b23
cites cdi_FETCH-LOGICAL-c257t-89d3e04fa60ff3c743d6a427029485b4a0f65f900eb2612ca69c26a8eac7d5b23
container_end_page
container_issue 10
container_start_page
container_title Journal of applied physics
container_volume 116
creator Lu, Nianduan
Li, Ling
Sun, Pengxiao
Banerjee, Writam
Liu, Ming
description A unified physical model for Seebeck coefficient was presented based on the multiple-trapping and release theory for amorphous oxide semiconductor thin-film transistors. According to the proposed model, the Seebeck coefficient is attributed to the Fermi-Dirac statistics combined with the energy dependent trap density of states and the gate-voltage dependence of the quasi-Fermi level. The simulation results show that the gate voltage, energy disorder, and temperature dependent Seebeck coefficient can be well described. The calculation also shows a good agreement with the experimental data in amorphous In-Ga-Zn-O thin-film transistor.
doi_str_mv 10.1063/1.4895046
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126557843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126557843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-89d3e04fa60ff3c743d6a427029485b4a0f65f900eb2612ca69c26a8eac7d5b23</originalsourceid><addsrcrecordid>eNotkE1LxDAYhIMouK4e_AcBTx66vvlsc1wWv2DBg3ouafqGzdo2NWnB_feuuKeB4WFmGEJuGawYaPHAVrIyCqQ-IwsGlSlKpeCcLAA4KypTmktylfMegLFKmAXxazoPwQds6bg75OBsR_vYYkejp--IDbov6iJ6H1zAYaJhoLaPadzFOdP4E1qkGfvg4tDOboqJTrswFD50PZ2SHXLIRzNfkwtvu4w3J12Sz6fHj81LsX17ft2st4XjqpyOA1uBIL3V4L1wpRSttpKXwI2sVCMteK28AcCGa8ad1cZxbSu0rmxVw8WS3P3njil-z5ineh_nNBwra864VqqspDhS9_-USzHnhL4eU-htOtQM6r8ba1afbhS_EitliQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126557843</pqid></control><display><type>article</type><title>A unified physical model of Seebeck coefficient in amorphous oxide semiconductor thin-film transistors</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Lu, Nianduan ; Li, Ling ; Sun, Pengxiao ; Banerjee, Writam ; Liu, Ming</creator><creatorcontrib>Lu, Nianduan ; Li, Ling ; Sun, Pengxiao ; Banerjee, Writam ; Liu, Ming</creatorcontrib><description>A unified physical model for Seebeck coefficient was presented based on the multiple-trapping and release theory for amorphous oxide semiconductor thin-film transistors. According to the proposed model, the Seebeck coefficient is attributed to the Fermi-Dirac statistics combined with the energy dependent trap density of states and the gate-voltage dependence of the quasi-Fermi level. The simulation results show that the gate voltage, energy disorder, and temperature dependent Seebeck coefficient can be well described. The calculation also shows a good agreement with the experimental data in amorphous In-Ga-Zn-O thin-film transistor.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4895046</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Computer simulation ; Electric potential ; Fermi-Dirac statistics ; Indium gallium zinc oxide ; Seebeck effect ; Semiconductor devices ; Temperature dependence ; Thin film transistors ; Transistors</subject><ispartof>Journal of applied physics, 2014-09, Vol.116 (10)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-89d3e04fa60ff3c743d6a427029485b4a0f65f900eb2612ca69c26a8eac7d5b23</citedby><cites>FETCH-LOGICAL-c257t-89d3e04fa60ff3c743d6a427029485b4a0f65f900eb2612ca69c26a8eac7d5b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lu, Nianduan</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Sun, Pengxiao</creatorcontrib><creatorcontrib>Banerjee, Writam</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><title>A unified physical model of Seebeck coefficient in amorphous oxide semiconductor thin-film transistors</title><title>Journal of applied physics</title><description>A unified physical model for Seebeck coefficient was presented based on the multiple-trapping and release theory for amorphous oxide semiconductor thin-film transistors. According to the proposed model, the Seebeck coefficient is attributed to the Fermi-Dirac statistics combined with the energy dependent trap density of states and the gate-voltage dependence of the quasi-Fermi level. The simulation results show that the gate voltage, energy disorder, and temperature dependent Seebeck coefficient can be well described. The calculation also shows a good agreement with the experimental data in amorphous In-Ga-Zn-O thin-film transistor.</description><subject>Applied physics</subject><subject>Computer simulation</subject><subject>Electric potential</subject><subject>Fermi-Dirac statistics</subject><subject>Indium gallium zinc oxide</subject><subject>Seebeck effect</subject><subject>Semiconductor devices</subject><subject>Temperature dependence</subject><subject>Thin film transistors</subject><subject>Transistors</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAYhIMouK4e_AcBTx66vvlsc1wWv2DBg3ouafqGzdo2NWnB_feuuKeB4WFmGEJuGawYaPHAVrIyCqQ-IwsGlSlKpeCcLAA4KypTmktylfMegLFKmAXxazoPwQds6bg75OBsR_vYYkejp--IDbov6iJ6H1zAYaJhoLaPadzFOdP4E1qkGfvg4tDOboqJTrswFD50PZ2SHXLIRzNfkwtvu4w3J12Sz6fHj81LsX17ft2st4XjqpyOA1uBIL3V4L1wpRSttpKXwI2sVCMteK28AcCGa8ad1cZxbSu0rmxVw8WS3P3njil-z5ineh_nNBwra864VqqspDhS9_-USzHnhL4eU-htOtQM6r8ba1afbhS_EitliQ</recordid><startdate>20140914</startdate><enddate>20140914</enddate><creator>Lu, Nianduan</creator><creator>Li, Ling</creator><creator>Sun, Pengxiao</creator><creator>Banerjee, Writam</creator><creator>Liu, Ming</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140914</creationdate><title>A unified physical model of Seebeck coefficient in amorphous oxide semiconductor thin-film transistors</title><author>Lu, Nianduan ; Li, Ling ; Sun, Pengxiao ; Banerjee, Writam ; Liu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-89d3e04fa60ff3c743d6a427029485b4a0f65f900eb2612ca69c26a8eac7d5b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Computer simulation</topic><topic>Electric potential</topic><topic>Fermi-Dirac statistics</topic><topic>Indium gallium zinc oxide</topic><topic>Seebeck effect</topic><topic>Semiconductor devices</topic><topic>Temperature dependence</topic><topic>Thin film transistors</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Nianduan</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Sun, Pengxiao</creatorcontrib><creatorcontrib>Banerjee, Writam</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Nianduan</au><au>Li, Ling</au><au>Sun, Pengxiao</au><au>Banerjee, Writam</au><au>Liu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A unified physical model of Seebeck coefficient in amorphous oxide semiconductor thin-film transistors</atitle><jtitle>Journal of applied physics</jtitle><date>2014-09-14</date><risdate>2014</risdate><volume>116</volume><issue>10</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>A unified physical model for Seebeck coefficient was presented based on the multiple-trapping and release theory for amorphous oxide semiconductor thin-film transistors. According to the proposed model, the Seebeck coefficient is attributed to the Fermi-Dirac statistics combined with the energy dependent trap density of states and the gate-voltage dependence of the quasi-Fermi level. The simulation results show that the gate voltage, energy disorder, and temperature dependent Seebeck coefficient can be well described. The calculation also shows a good agreement with the experimental data in amorphous In-Ga-Zn-O thin-film transistor.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4895046</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-09, Vol.116 (10)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2126557843
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Computer simulation
Electric potential
Fermi-Dirac statistics
Indium gallium zinc oxide
Seebeck effect
Semiconductor devices
Temperature dependence
Thin film transistors
Transistors
title A unified physical model of Seebeck coefficient in amorphous oxide semiconductor thin-film transistors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20unified%20physical%20model%20of%20Seebeck%20coefficient%20in%20amorphous%20oxide%20semiconductor%20thin-film%20transistors&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Lu,%20Nianduan&rft.date=2014-09-14&rft.volume=116&rft.issue=10&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4895046&rft_dat=%3Cproquest_cross%3E2126557843%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-89d3e04fa60ff3c743d6a427029485b4a0f65f900eb2612ca69c26a8eac7d5b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126557843&rft_id=info:pmid/&rfr_iscdi=true