Loading…

Growth and characterization of dilute nitride GaNxP1−x nanowires and GaNxP1−x/GaNyP1−y core/shell nanowires on Si (111) by gas source molecular beam epitaxy

We have demonstrated self-catalyzed GaNxP1−x and GaNxP1−x/GaNyP1−y core/shell nanowire growth by gas-source molecular beam epitaxy. The growth window for GaNxP1−x nanowires was observed to be comparable to that of GaP nanowires (∼585 °C to ∼615 °C). Transmission electron microscopy showed a mixture...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2014-08, Vol.105 (7)
Main Authors: Sukrittanon, S., Kuang, Y. J., Dobrovolsky, A., Kang, Won-Mo, Jang, Ja-Soon, Kim, Bong-Joong, Chen, W. M., Buyanova, I. A., Tu, C. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have demonstrated self-catalyzed GaNxP1−x and GaNxP1−x/GaNyP1−y core/shell nanowire growth by gas-source molecular beam epitaxy. The growth window for GaNxP1−x nanowires was observed to be comparable to that of GaP nanowires (∼585 °C to ∼615 °C). Transmission electron microscopy showed a mixture of cubic zincblende phase and hexagonal wurtzite phase along the [111] growth direction in GaNxP1−x nanowires. A temperature-dependent photoluminescence (PL) study performed on GaNxP1−x/GaNyP1−y core/shell nanowires exhibited an S-shape dependence of the PL peaks. This suggests that at low temperature, the emission stems from N-related localized states below the conduction band edge in the shell, while at high temperature, the emission stems from band-to-band transition in the shell as well as recombination in the GaNxP1−x core.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4893745