Loading…

Coexistence of bunching and meandering instability in simulated growth of 4H-SiC(0001) surface

Bunching and meandering instability of steps at the 4H-SiC(0001) surface is studied by the kinetic Monte Carlo simulation method. Change in the character of step instability is analyzed for different rates of particle jumps towards step. In the experiment effective value of jump rates can be control...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2014-06, Vol.115 (21)
Main Authors: Krzyżewski, Filip, Załuska–Kotur, Magdalena A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-bab2280f90dc9924e674af4edcd8973b20dfdcf96dc569cd6d86a57e6b95b0b73
cites cdi_FETCH-LOGICAL-c323t-bab2280f90dc9924e674af4edcd8973b20dfdcf96dc569cd6d86a57e6b95b0b73
container_end_page
container_issue 21
container_start_page
container_title Journal of applied physics
container_volume 115
creator Krzyżewski, Filip
Załuska–Kotur, Magdalena A.
description Bunching and meandering instability of steps at the 4H-SiC(0001) surface is studied by the kinetic Monte Carlo simulation method. Change in the character of step instability is analyzed for different rates of particle jumps towards step. In the experiment effective value of jump rates can be controlled by impurities or other growth conditions. An anisotropy of jump barriers at the step influences the character of surface structure formed in the process of crystal growth. Depending on the growth parameters different surface patterns are found. We show phase diagrams of surface patterns as a function of temperature and crystal growth rate for two different choices of step kinetics anisotropy. Jump rates which effectively model high inverse Schwoebel barrier (ISB) at steps lead either to regular, four-multistep or bunched structure. For weak anisotropy at higher temperatures or for lower crystal growth rates meanders and mounds are formed, but on coming towards lower temperatures and higher rates, we observe bunch and meander coexistence. These results show that interplay between simple dynamical mechanisms induced by the asymmetry of the step kinetics and step movement assisted by the step edge diffusion are responsible for different types of surface morphology.
doi_str_mv 10.1063/1.4881816
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126583305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126583305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-bab2280f90dc9924e674af4edcd8973b20dfdcf96dc569cd6d86a57e6b95b0b73</originalsourceid><addsrcrecordid>eNotUE1LwzAYDqLgnB78BwEv7tD5JmnS5ChFnTDwoF4t-dwytnYmLbp_b8e8vB_wfPEgdEtgTkCwBzIvpSSSiDM0ISBVUXEO52gCQEkhVaUu0VXOGwBCJFMT9FV3_jfm3rfW4y5gM7R2HdsV1q3DOz9On45vbHOvTdzG_jDeOMfdsNW9d3iVup9-faSWi-I91vcwas9wHlLQ1l-ji6C32d_87yn6fH76qBfF8u3ltX5cFpZR1hdGG0olBAXOKkVLL6pSh9I768bMzFBwwdmghLNcKOuEk0LzygujuAFTsSm6O-nuU_c9-Nw3m25I7WjZUEIFl4wBH1GzE8qmLufkQ7NPcafToSHQHOtrSPNfH_sDbBdhdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126583305</pqid></control><display><type>article</type><title>Coexistence of bunching and meandering instability in simulated growth of 4H-SiC(0001) surface</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Krzyżewski, Filip ; Załuska–Kotur, Magdalena A.</creator><creatorcontrib>Krzyżewski, Filip ; Załuska–Kotur, Magdalena A.</creatorcontrib><description>Bunching and meandering instability of steps at the 4H-SiC(0001) surface is studied by the kinetic Monte Carlo simulation method. Change in the character of step instability is analyzed for different rates of particle jumps towards step. In the experiment effective value of jump rates can be controlled by impurities or other growth conditions. An anisotropy of jump barriers at the step influences the character of surface structure formed in the process of crystal growth. Depending on the growth parameters different surface patterns are found. We show phase diagrams of surface patterns as a function of temperature and crystal growth rate for two different choices of step kinetics anisotropy. Jump rates which effectively model high inverse Schwoebel barrier (ISB) at steps lead either to regular, four-multistep or bunched structure. For weak anisotropy at higher temperatures or for lower crystal growth rates meanders and mounds are formed, but on coming towards lower temperatures and higher rates, we observe bunch and meander coexistence. These results show that interplay between simple dynamical mechanisms induced by the asymmetry of the step kinetics and step movement assisted by the step edge diffusion are responsible for different types of surface morphology.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4881816</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Applied physics ; Bunching ; Computer simulation ; Crystal growth ; Crystal structure ; Crystals ; Meanders ; Monte Carlo simulation ; Morphology ; Phase diagrams ; Stability analysis ; Surface stability ; Surface structure</subject><ispartof>Journal of applied physics, 2014-06, Vol.115 (21)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-bab2280f90dc9924e674af4edcd8973b20dfdcf96dc569cd6d86a57e6b95b0b73</citedby><cites>FETCH-LOGICAL-c323t-bab2280f90dc9924e674af4edcd8973b20dfdcf96dc569cd6d86a57e6b95b0b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Krzyżewski, Filip</creatorcontrib><creatorcontrib>Załuska–Kotur, Magdalena A.</creatorcontrib><title>Coexistence of bunching and meandering instability in simulated growth of 4H-SiC(0001) surface</title><title>Journal of applied physics</title><description>Bunching and meandering instability of steps at the 4H-SiC(0001) surface is studied by the kinetic Monte Carlo simulation method. Change in the character of step instability is analyzed for different rates of particle jumps towards step. In the experiment effective value of jump rates can be controlled by impurities or other growth conditions. An anisotropy of jump barriers at the step influences the character of surface structure formed in the process of crystal growth. Depending on the growth parameters different surface patterns are found. We show phase diagrams of surface patterns as a function of temperature and crystal growth rate for two different choices of step kinetics anisotropy. Jump rates which effectively model high inverse Schwoebel barrier (ISB) at steps lead either to regular, four-multistep or bunched structure. For weak anisotropy at higher temperatures or for lower crystal growth rates meanders and mounds are formed, but on coming towards lower temperatures and higher rates, we observe bunch and meander coexistence. These results show that interplay between simple dynamical mechanisms induced by the asymmetry of the step kinetics and step movement assisted by the step edge diffusion are responsible for different types of surface morphology.</description><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Bunching</subject><subject>Computer simulation</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Meanders</subject><subject>Monte Carlo simulation</subject><subject>Morphology</subject><subject>Phase diagrams</subject><subject>Stability analysis</subject><subject>Surface stability</subject><subject>Surface structure</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotUE1LwzAYDqLgnB78BwEv7tD5JmnS5ChFnTDwoF4t-dwytnYmLbp_b8e8vB_wfPEgdEtgTkCwBzIvpSSSiDM0ISBVUXEO52gCQEkhVaUu0VXOGwBCJFMT9FV3_jfm3rfW4y5gM7R2HdsV1q3DOz9On45vbHOvTdzG_jDeOMfdsNW9d3iVup9-faSWi-I91vcwas9wHlLQ1l-ji6C32d_87yn6fH76qBfF8u3ltX5cFpZR1hdGG0olBAXOKkVLL6pSh9I768bMzFBwwdmghLNcKOuEk0LzygujuAFTsSm6O-nuU_c9-Nw3m25I7WjZUEIFl4wBH1GzE8qmLufkQ7NPcafToSHQHOtrSPNfH_sDbBdhdA</recordid><startdate>20140607</startdate><enddate>20140607</enddate><creator>Krzyżewski, Filip</creator><creator>Załuska–Kotur, Magdalena A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140607</creationdate><title>Coexistence of bunching and meandering instability in simulated growth of 4H-SiC(0001) surface</title><author>Krzyżewski, Filip ; Załuska–Kotur, Magdalena A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-bab2280f90dc9924e674af4edcd8973b20dfdcf96dc569cd6d86a57e6b95b0b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Bunching</topic><topic>Computer simulation</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Meanders</topic><topic>Monte Carlo simulation</topic><topic>Morphology</topic><topic>Phase diagrams</topic><topic>Stability analysis</topic><topic>Surface stability</topic><topic>Surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krzyżewski, Filip</creatorcontrib><creatorcontrib>Załuska–Kotur, Magdalena A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krzyżewski, Filip</au><au>Załuska–Kotur, Magdalena A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coexistence of bunching and meandering instability in simulated growth of 4H-SiC(0001) surface</atitle><jtitle>Journal of applied physics</jtitle><date>2014-06-07</date><risdate>2014</risdate><volume>115</volume><issue>21</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Bunching and meandering instability of steps at the 4H-SiC(0001) surface is studied by the kinetic Monte Carlo simulation method. Change in the character of step instability is analyzed for different rates of particle jumps towards step. In the experiment effective value of jump rates can be controlled by impurities or other growth conditions. An anisotropy of jump barriers at the step influences the character of surface structure formed in the process of crystal growth. Depending on the growth parameters different surface patterns are found. We show phase diagrams of surface patterns as a function of temperature and crystal growth rate for two different choices of step kinetics anisotropy. Jump rates which effectively model high inverse Schwoebel barrier (ISB) at steps lead either to regular, four-multistep or bunched structure. For weak anisotropy at higher temperatures or for lower crystal growth rates meanders and mounds are formed, but on coming towards lower temperatures and higher rates, we observe bunch and meander coexistence. These results show that interplay between simple dynamical mechanisms induced by the asymmetry of the step kinetics and step movement assisted by the step edge diffusion are responsible for different types of surface morphology.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4881816</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-06, Vol.115 (21)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2126583305
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Anisotropy
Applied physics
Bunching
Computer simulation
Crystal growth
Crystal structure
Crystals
Meanders
Monte Carlo simulation
Morphology
Phase diagrams
Stability analysis
Surface stability
Surface structure
title Coexistence of bunching and meandering instability in simulated growth of 4H-SiC(0001) surface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coexistence%20of%20bunching%20and%20meandering%20instability%20in%20simulated%20growth%20of%204H-SiC(0001)%20surface&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Krzy%C5%BCewski,%20Filip&rft.date=2014-06-07&rft.volume=115&rft.issue=21&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4881816&rft_dat=%3Cproquest_cross%3E2126583305%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-bab2280f90dc9924e674af4edcd8973b20dfdcf96dc569cd6d86a57e6b95b0b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126583305&rft_id=info:pmid/&rfr_iscdi=true