Loading…

Bivariate Poisson-weighted exponential distribution with applications

This paper proposes the bivariate version of Poisson-weighted exponential (PWE) distribution considered in Zamani and Ismail (2010). This new discrete bivariate Poisson-weighted exponential (BPWE) distribution can be used as an alternative for modeling dependent and over-dispersed count data. Severa...

Full description

Saved in:
Bibliographic Details
Main Authors: Zamani Hossein, Faroughi Pouya, Ismail Noriszura
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 968
container_issue 1
container_start_page
container_title
container_volume 1602
creator Zamani Hossein
Faroughi Pouya
Ismail Noriszura
description This paper proposes the bivariate version of Poisson-weighted exponential (PWE) distribution considered in Zamani and Ismail (2010). This new discrete bivariate Poisson-weighted exponential (BPWE) distribution can be used as an alternative for modeling dependent and over-dispersed count data. Several properties such as mean, variance, correlation and joint moment generating function of the new BPWE distribution are discussed. A numerical example is given and the BPWE distribution is compared to bivariate Poisson (BP) distribution. The results show that BPWE distribution provides larger log likelihood and smaller AIC, indicating that BPWE distribution is better than BP distribution and can be used as an alternative for fitting dependent and over-dispersed count data.
doi_str_mv 10.1063/1.4882600
format conference_proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2126585371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126585371</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-40c83aab52ecc766ba79ec1181d3f03359a2389e8d5bc2c243cb8bfd4ec244c3</originalsourceid><addsrcrecordid>eNotjr1OwzAYRS0EEqEw8AaWmF38-T8jVKUgVYKhA1tlOw51FcUhdiiPTxBM9-oM91yEboEugSp-D0thDFOUnqEKpASiFahzVFFaC8IEf79EVzkfKWW11qZC68f4ZcdoS8BvKeacenIK8eNQQoPD95D60JdoO9zEXMbophJTj0-xHLAdhi56-wvyNbpobZfDzX8u0O5pvVs9k-3r5mX1sCUDGF6IoN5wa51kwXutlLO6Dh7AQMNbyrmsLeOmDqaRzjM_3_XOuLYRYe7C8wW6-5sdxvQ5hVz2xzSN_WzcM2BKGsk18B_eiU06</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2126585371</pqid></control><display><type>conference_proceeding</type><title>Bivariate Poisson-weighted exponential distribution with applications</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Zamani Hossein ; Faroughi Pouya ; Ismail Noriszura</creator><creatorcontrib>Zamani Hossein ; Faroughi Pouya ; Ismail Noriszura</creatorcontrib><description>This paper proposes the bivariate version of Poisson-weighted exponential (PWE) distribution considered in Zamani and Ismail (2010). This new discrete bivariate Poisson-weighted exponential (BPWE) distribution can be used as an alternative for modeling dependent and over-dispersed count data. Several properties such as mean, variance, correlation and joint moment generating function of the new BPWE distribution are discussed. A numerical example is given and the BPWE distribution is compared to bivariate Poisson (BP) distribution. The results show that BPWE distribution provides larger log likelihood and smaller AIC, indicating that BPWE distribution is better than BP distribution and can be used as an alternative for fitting dependent and over-dispersed count data.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4882600</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bivariate analysis ; Dispersion ; Mathematical models ; Probability distribution functions</subject><ispartof>AIP conference proceedings, 2014, Vol.1602 (1), p.968</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925</link.rule.ids></links><search><creatorcontrib>Zamani Hossein</creatorcontrib><creatorcontrib>Faroughi Pouya</creatorcontrib><creatorcontrib>Ismail Noriszura</creatorcontrib><title>Bivariate Poisson-weighted exponential distribution with applications</title><title>AIP conference proceedings</title><description>This paper proposes the bivariate version of Poisson-weighted exponential (PWE) distribution considered in Zamani and Ismail (2010). This new discrete bivariate Poisson-weighted exponential (BPWE) distribution can be used as an alternative for modeling dependent and over-dispersed count data. Several properties such as mean, variance, correlation and joint moment generating function of the new BPWE distribution are discussed. A numerical example is given and the BPWE distribution is compared to bivariate Poisson (BP) distribution. The results show that BPWE distribution provides larger log likelihood and smaller AIC, indicating that BPWE distribution is better than BP distribution and can be used as an alternative for fitting dependent and over-dispersed count data.</description><subject>Bivariate analysis</subject><subject>Dispersion</subject><subject>Mathematical models</subject><subject>Probability distribution functions</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjr1OwzAYRS0EEqEw8AaWmF38-T8jVKUgVYKhA1tlOw51FcUhdiiPTxBM9-oM91yEboEugSp-D0thDFOUnqEKpASiFahzVFFaC8IEf79EVzkfKWW11qZC68f4ZcdoS8BvKeacenIK8eNQQoPD95D60JdoO9zEXMbophJTj0-xHLAdhi56-wvyNbpobZfDzX8u0O5pvVs9k-3r5mX1sCUDGF6IoN5wa51kwXutlLO6Dh7AQMNbyrmsLeOmDqaRzjM_3_XOuLYRYe7C8wW6-5sdxvQ5hVz2xzSN_WzcM2BKGsk18B_eiU06</recordid><startdate>20140619</startdate><enddate>20140619</enddate><creator>Zamani Hossein</creator><creator>Faroughi Pouya</creator><creator>Ismail Noriszura</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140619</creationdate><title>Bivariate Poisson-weighted exponential distribution with applications</title><author>Zamani Hossein ; Faroughi Pouya ; Ismail Noriszura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-40c83aab52ecc766ba79ec1181d3f03359a2389e8d5bc2c243cb8bfd4ec244c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bivariate analysis</topic><topic>Dispersion</topic><topic>Mathematical models</topic><topic>Probability distribution functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamani Hossein</creatorcontrib><creatorcontrib>Faroughi Pouya</creatorcontrib><creatorcontrib>Ismail Noriszura</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zamani Hossein</au><au>Faroughi Pouya</au><au>Ismail Noriszura</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bivariate Poisson-weighted exponential distribution with applications</atitle><btitle>AIP conference proceedings</btitle><date>2014-06-19</date><risdate>2014</risdate><volume>1602</volume><issue>1</issue><epage>968</epage><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>This paper proposes the bivariate version of Poisson-weighted exponential (PWE) distribution considered in Zamani and Ismail (2010). This new discrete bivariate Poisson-weighted exponential (BPWE) distribution can be used as an alternative for modeling dependent and over-dispersed count data. Several properties such as mean, variance, correlation and joint moment generating function of the new BPWE distribution are discussed. A numerical example is given and the BPWE distribution is compared to bivariate Poisson (BP) distribution. The results show that BPWE distribution provides larger log likelihood and smaller AIC, indicating that BPWE distribution is better than BP distribution and can be used as an alternative for fitting dependent and over-dispersed count data.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4882600</doi></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2014, Vol.1602 (1), p.968
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2126585371
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Bivariate analysis
Dispersion
Mathematical models
Probability distribution functions
title Bivariate Poisson-weighted exponential distribution with applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A06%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bivariate%20Poisson-weighted%20exponential%20distribution%20with%20applications&rft.btitle=AIP%20conference%20proceedings&rft.au=Zamani%20Hossein&rft.date=2014-06-19&rft.volume=1602&rft.issue=1&rft.epage=968&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4882600&rft_dat=%3Cproquest%3E2126585371%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-40c83aab52ecc766ba79ec1181d3f03359a2389e8d5bc2c243cb8bfd4ec244c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126585371&rft_id=info:pmid/&rfr_iscdi=true