Loading…
Bivariate Poisson-weighted exponential distribution with applications
This paper proposes the bivariate version of Poisson-weighted exponential (PWE) distribution considered in Zamani and Ismail (2010). This new discrete bivariate Poisson-weighted exponential (BPWE) distribution can be used as an alternative for modeling dependent and over-dispersed count data. Severa...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 968 |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1602 |
creator | Zamani Hossein Faroughi Pouya Ismail Noriszura |
description | This paper proposes the bivariate version of Poisson-weighted exponential (PWE) distribution considered in Zamani and Ismail (2010). This new discrete bivariate Poisson-weighted exponential (BPWE) distribution can be used as an alternative for modeling dependent and over-dispersed count data. Several properties such as mean, variance, correlation and joint moment generating function of the new BPWE distribution are discussed. A numerical example is given and the BPWE distribution is compared to bivariate Poisson (BP) distribution. The results show that BPWE distribution provides larger log likelihood and smaller AIC, indicating that BPWE distribution is better than BP distribution and can be used as an alternative for fitting dependent and over-dispersed count data. |
doi_str_mv | 10.1063/1.4882600 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2126585371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126585371</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-40c83aab52ecc766ba79ec1181d3f03359a2389e8d5bc2c243cb8bfd4ec244c3</originalsourceid><addsrcrecordid>eNotjr1OwzAYRS0EEqEw8AaWmF38-T8jVKUgVYKhA1tlOw51FcUhdiiPTxBM9-oM91yEboEugSp-D0thDFOUnqEKpASiFahzVFFaC8IEf79EVzkfKWW11qZC68f4ZcdoS8BvKeacenIK8eNQQoPD95D60JdoO9zEXMbophJTj0-xHLAdhi56-wvyNbpobZfDzX8u0O5pvVs9k-3r5mX1sCUDGF6IoN5wa51kwXutlLO6Dh7AQMNbyrmsLeOmDqaRzjM_3_XOuLYRYe7C8wW6-5sdxvQ5hVz2xzSN_WzcM2BKGsk18B_eiU06</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2126585371</pqid></control><display><type>conference_proceeding</type><title>Bivariate Poisson-weighted exponential distribution with applications</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Zamani Hossein ; Faroughi Pouya ; Ismail Noriszura</creator><creatorcontrib>Zamani Hossein ; Faroughi Pouya ; Ismail Noriszura</creatorcontrib><description>This paper proposes the bivariate version of Poisson-weighted exponential (PWE) distribution considered in Zamani and Ismail (2010). This new discrete bivariate Poisson-weighted exponential (BPWE) distribution can be used as an alternative for modeling dependent and over-dispersed count data. Several properties such as mean, variance, correlation and joint moment generating function of the new BPWE distribution are discussed. A numerical example is given and the BPWE distribution is compared to bivariate Poisson (BP) distribution. The results show that BPWE distribution provides larger log likelihood and smaller AIC, indicating that BPWE distribution is better than BP distribution and can be used as an alternative for fitting dependent and over-dispersed count data.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4882600</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bivariate analysis ; Dispersion ; Mathematical models ; Probability distribution functions</subject><ispartof>AIP conference proceedings, 2014, Vol.1602 (1), p.968</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925</link.rule.ids></links><search><creatorcontrib>Zamani Hossein</creatorcontrib><creatorcontrib>Faroughi Pouya</creatorcontrib><creatorcontrib>Ismail Noriszura</creatorcontrib><title>Bivariate Poisson-weighted exponential distribution with applications</title><title>AIP conference proceedings</title><description>This paper proposes the bivariate version of Poisson-weighted exponential (PWE) distribution considered in Zamani and Ismail (2010). This new discrete bivariate Poisson-weighted exponential (BPWE) distribution can be used as an alternative for modeling dependent and over-dispersed count data. Several properties such as mean, variance, correlation and joint moment generating function of the new BPWE distribution are discussed. A numerical example is given and the BPWE distribution is compared to bivariate Poisson (BP) distribution. The results show that BPWE distribution provides larger log likelihood and smaller AIC, indicating that BPWE distribution is better than BP distribution and can be used as an alternative for fitting dependent and over-dispersed count data.</description><subject>Bivariate analysis</subject><subject>Dispersion</subject><subject>Mathematical models</subject><subject>Probability distribution functions</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjr1OwzAYRS0EEqEw8AaWmF38-T8jVKUgVYKhA1tlOw51FcUhdiiPTxBM9-oM91yEboEugSp-D0thDFOUnqEKpASiFahzVFFaC8IEf79EVzkfKWW11qZC68f4ZcdoS8BvKeacenIK8eNQQoPD95D60JdoO9zEXMbophJTj0-xHLAdhi56-wvyNbpobZfDzX8u0O5pvVs9k-3r5mX1sCUDGF6IoN5wa51kwXutlLO6Dh7AQMNbyrmsLeOmDqaRzjM_3_XOuLYRYe7C8wW6-5sdxvQ5hVz2xzSN_WzcM2BKGsk18B_eiU06</recordid><startdate>20140619</startdate><enddate>20140619</enddate><creator>Zamani Hossein</creator><creator>Faroughi Pouya</creator><creator>Ismail Noriszura</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140619</creationdate><title>Bivariate Poisson-weighted exponential distribution with applications</title><author>Zamani Hossein ; Faroughi Pouya ; Ismail Noriszura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-40c83aab52ecc766ba79ec1181d3f03359a2389e8d5bc2c243cb8bfd4ec244c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bivariate analysis</topic><topic>Dispersion</topic><topic>Mathematical models</topic><topic>Probability distribution functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamani Hossein</creatorcontrib><creatorcontrib>Faroughi Pouya</creatorcontrib><creatorcontrib>Ismail Noriszura</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zamani Hossein</au><au>Faroughi Pouya</au><au>Ismail Noriszura</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bivariate Poisson-weighted exponential distribution with applications</atitle><btitle>AIP conference proceedings</btitle><date>2014-06-19</date><risdate>2014</risdate><volume>1602</volume><issue>1</issue><epage>968</epage><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>This paper proposes the bivariate version of Poisson-weighted exponential (PWE) distribution considered in Zamani and Ismail (2010). This new discrete bivariate Poisson-weighted exponential (BPWE) distribution can be used as an alternative for modeling dependent and over-dispersed count data. Several properties such as mean, variance, correlation and joint moment generating function of the new BPWE distribution are discussed. A numerical example is given and the BPWE distribution is compared to bivariate Poisson (BP) distribution. The results show that BPWE distribution provides larger log likelihood and smaller AIC, indicating that BPWE distribution is better than BP distribution and can be used as an alternative for fitting dependent and over-dispersed count data.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4882600</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2014, Vol.1602 (1), p.968 |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2126585371 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Bivariate analysis Dispersion Mathematical models Probability distribution functions |
title | Bivariate Poisson-weighted exponential distribution with applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A06%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bivariate%20Poisson-weighted%20exponential%20distribution%20with%20applications&rft.btitle=AIP%20conference%20proceedings&rft.au=Zamani%20Hossein&rft.date=2014-06-19&rft.volume=1602&rft.issue=1&rft.epage=968&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4882600&rft_dat=%3Cproquest%3E2126585371%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-40c83aab52ecc766ba79ec1181d3f03359a2389e8d5bc2c243cb8bfd4ec244c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126585371&rft_id=info:pmid/&rfr_iscdi=true |