Loading…

Superferromagnetism in chain-like Fe@SiO2 nanoparticle ensembles

One-dimensional (1D) chain-like nanocomposites, created by ensembles of nanoparticles of with diameter ∼ 13 nm, which are composed of an iron core (∼4 nm) and a silica protective layer, were prepared by a self-assembly process. Chain-like Fe@SiO2 ensembles were formed due to strong magnetic dipole–d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2014-07, Vol.116 (3)
Main Authors: Zeleňáková, A., Zeleňák, V., Mat'ko, I., Strečková, M., Hrubovčák, P., Kováč, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-f1c93e9d3007940d5effcb1f36730cac032bd215065a1534d1ea5c518cfbe7093
cites cdi_FETCH-LOGICAL-c292t-f1c93e9d3007940d5effcb1f36730cac032bd215065a1534d1ea5c518cfbe7093
container_end_page
container_issue 3
container_start_page
container_title Journal of applied physics
container_volume 116
creator Zeleňáková, A.
Zeleňák, V.
Mat'ko, I.
Strečková, M.
Hrubovčák, P.
Kováč, J.
description One-dimensional (1D) chain-like nanocomposites, created by ensembles of nanoparticles of with diameter ∼ 13 nm, which are composed of an iron core (∼4 nm) and a silica protective layer, were prepared by a self-assembly process. Chain-like Fe@SiO2 ensembles were formed due to strong magnetic dipole–dipole interactions between individual Fe nanoparticles and the subsequent fixation of the Fe particles by the SiO2 layers. X-ray near edge absorption spectra measurements at the Fe K absorption edge confirm that the presence of a silica layer prevents the oxidation of the magnetic Fe core. Strong magnetic interactions between Fe cores lead to long-range ordering of magnetic moments, and the nanoparticle ensembles exhibit superferromagnetic characteristics demonstrated by a broad blocking Zero-field cooling (ZFC)/field-cooling distribution, nearly constant temperature dependence of ZFC magnetization, and non-zero coercivity at room temperature. Low room-temperature coercivity and the presence of electrically insulating SiO2 shells surrounding the Fe core make the studied samples suitable candidates for microelectronic applications.
doi_str_mv 10.1063/1.4890354
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126592767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126592767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f1c93e9d3007940d5effcb1f36730cac032bd215065a1534d1ea5c518cfbe7093</originalsourceid><addsrcrecordid>eNotkLFOwzAURS0EEqUw8AeRmBgC79lxEm9FFQWkSh0Ks-U4z-CSOMFOB_6eona6y9U50mHsFuEBoRSP-FDUCoQsztgMoVZ5JSWcsxkAx7xWlbpkVyntABBroWZssd2PFB3FOPTmM9DkU5_5kNkv40Pe-W_KVrTY-g3PggnDaOLkbUcZhUR901G6ZhfOdIluTjtnH6vn9-Vrvt68vC2f1rnlik-5Q6sEqVYAVKqAVpJztkEnykqANRYEb1qOEkppUIqiRTLSSqyta6gCJebs7sgd4_CzpzTp3bCP4aDUHHkpFa8OqDm7P75sHFKK5PQYfW_ir0bQ_4E06lMg8QdYklbn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126592767</pqid></control><display><type>article</type><title>Superferromagnetism in chain-like Fe@SiO2 nanoparticle ensembles</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Zeleňáková, A. ; Zeleňák, V. ; Mat'ko, I. ; Strečková, M. ; Hrubovčák, P. ; Kováč, J.</creator><creatorcontrib>Zeleňáková, A. ; Zeleňák, V. ; Mat'ko, I. ; Strečková, M. ; Hrubovčák, P. ; Kováč, J.</creatorcontrib><description>One-dimensional (1D) chain-like nanocomposites, created by ensembles of nanoparticles of with diameter ∼ 13 nm, which are composed of an iron core (∼4 nm) and a silica protective layer, were prepared by a self-assembly process. Chain-like Fe@SiO2 ensembles were formed due to strong magnetic dipole–dipole interactions between individual Fe nanoparticles and the subsequent fixation of the Fe particles by the SiO2 layers. X-ray near edge absorption spectra measurements at the Fe K absorption edge confirm that the presence of a silica layer prevents the oxidation of the magnetic Fe core. Strong magnetic interactions between Fe cores lead to long-range ordering of magnetic moments, and the nanoparticle ensembles exhibit superferromagnetic characteristics demonstrated by a broad blocking Zero-field cooling (ZFC)/field-cooling distribution, nearly constant temperature dependence of ZFC magnetization, and non-zero coercivity at room temperature. Low room-temperature coercivity and the presence of electrically insulating SiO2 shells surrounding the Fe core make the studied samples suitable candidates for microelectronic applications.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4890354</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption spectra ; Applied physics ; Coercivity ; Cooling ; Core making ; Dipole interactions ; Iron ; Magnetic dipoles ; Magnetic moments ; Magnetism ; Nanocomposites ; Nanoparticles ; Oxidation ; Process management ; Self-assembly ; Silicon dioxide ; Temperature dependence ; X ray spectra</subject><ispartof>Journal of applied physics, 2014-07, Vol.116 (3)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f1c93e9d3007940d5effcb1f36730cac032bd215065a1534d1ea5c518cfbe7093</citedby><cites>FETCH-LOGICAL-c292t-f1c93e9d3007940d5effcb1f36730cac032bd215065a1534d1ea5c518cfbe7093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zeleňáková, A.</creatorcontrib><creatorcontrib>Zeleňák, V.</creatorcontrib><creatorcontrib>Mat'ko, I.</creatorcontrib><creatorcontrib>Strečková, M.</creatorcontrib><creatorcontrib>Hrubovčák, P.</creatorcontrib><creatorcontrib>Kováč, J.</creatorcontrib><title>Superferromagnetism in chain-like Fe@SiO2 nanoparticle ensembles</title><title>Journal of applied physics</title><description>One-dimensional (1D) chain-like nanocomposites, created by ensembles of nanoparticles of with diameter ∼ 13 nm, which are composed of an iron core (∼4 nm) and a silica protective layer, were prepared by a self-assembly process. Chain-like Fe@SiO2 ensembles were formed due to strong magnetic dipole–dipole interactions between individual Fe nanoparticles and the subsequent fixation of the Fe particles by the SiO2 layers. X-ray near edge absorption spectra measurements at the Fe K absorption edge confirm that the presence of a silica layer prevents the oxidation of the magnetic Fe core. Strong magnetic interactions between Fe cores lead to long-range ordering of magnetic moments, and the nanoparticle ensembles exhibit superferromagnetic characteristics demonstrated by a broad blocking Zero-field cooling (ZFC)/field-cooling distribution, nearly constant temperature dependence of ZFC magnetization, and non-zero coercivity at room temperature. Low room-temperature coercivity and the presence of electrically insulating SiO2 shells surrounding the Fe core make the studied samples suitable candidates for microelectronic applications.</description><subject>Absorption spectra</subject><subject>Applied physics</subject><subject>Coercivity</subject><subject>Cooling</subject><subject>Core making</subject><subject>Dipole interactions</subject><subject>Iron</subject><subject>Magnetic dipoles</subject><subject>Magnetic moments</subject><subject>Magnetism</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Process management</subject><subject>Self-assembly</subject><subject>Silicon dioxide</subject><subject>Temperature dependence</subject><subject>X ray spectra</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAURS0EEqUw8AeRmBgC79lxEm9FFQWkSh0Ks-U4z-CSOMFOB_6eona6y9U50mHsFuEBoRSP-FDUCoQsztgMoVZ5JSWcsxkAx7xWlbpkVyntABBroWZssd2PFB3FOPTmM9DkU5_5kNkv40Pe-W_KVrTY-g3PggnDaOLkbUcZhUR901G6ZhfOdIluTjtnH6vn9-Vrvt68vC2f1rnlik-5Q6sEqVYAVKqAVpJztkEnykqANRYEb1qOEkppUIqiRTLSSqyta6gCJebs7sgd4_CzpzTp3bCP4aDUHHkpFa8OqDm7P75sHFKK5PQYfW_ir0bQ_4E06lMg8QdYklbn</recordid><startdate>20140721</startdate><enddate>20140721</enddate><creator>Zeleňáková, A.</creator><creator>Zeleňák, V.</creator><creator>Mat'ko, I.</creator><creator>Strečková, M.</creator><creator>Hrubovčák, P.</creator><creator>Kováč, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140721</creationdate><title>Superferromagnetism in chain-like Fe@SiO2 nanoparticle ensembles</title><author>Zeleňáková, A. ; Zeleňák, V. ; Mat'ko, I. ; Strečková, M. ; Hrubovčák, P. ; Kováč, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f1c93e9d3007940d5effcb1f36730cac032bd215065a1534d1ea5c518cfbe7093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Absorption spectra</topic><topic>Applied physics</topic><topic>Coercivity</topic><topic>Cooling</topic><topic>Core making</topic><topic>Dipole interactions</topic><topic>Iron</topic><topic>Magnetic dipoles</topic><topic>Magnetic moments</topic><topic>Magnetism</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Process management</topic><topic>Self-assembly</topic><topic>Silicon dioxide</topic><topic>Temperature dependence</topic><topic>X ray spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeleňáková, A.</creatorcontrib><creatorcontrib>Zeleňák, V.</creatorcontrib><creatorcontrib>Mat'ko, I.</creatorcontrib><creatorcontrib>Strečková, M.</creatorcontrib><creatorcontrib>Hrubovčák, P.</creatorcontrib><creatorcontrib>Kováč, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeleňáková, A.</au><au>Zeleňák, V.</au><au>Mat'ko, I.</au><au>Strečková, M.</au><au>Hrubovčák, P.</au><au>Kováč, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superferromagnetism in chain-like Fe@SiO2 nanoparticle ensembles</atitle><jtitle>Journal of applied physics</jtitle><date>2014-07-21</date><risdate>2014</risdate><volume>116</volume><issue>3</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>One-dimensional (1D) chain-like nanocomposites, created by ensembles of nanoparticles of with diameter ∼ 13 nm, which are composed of an iron core (∼4 nm) and a silica protective layer, were prepared by a self-assembly process. Chain-like Fe@SiO2 ensembles were formed due to strong magnetic dipole–dipole interactions between individual Fe nanoparticles and the subsequent fixation of the Fe particles by the SiO2 layers. X-ray near edge absorption spectra measurements at the Fe K absorption edge confirm that the presence of a silica layer prevents the oxidation of the magnetic Fe core. Strong magnetic interactions between Fe cores lead to long-range ordering of magnetic moments, and the nanoparticle ensembles exhibit superferromagnetic characteristics demonstrated by a broad blocking Zero-field cooling (ZFC)/field-cooling distribution, nearly constant temperature dependence of ZFC magnetization, and non-zero coercivity at room temperature. Low room-temperature coercivity and the presence of electrically insulating SiO2 shells surrounding the Fe core make the studied samples suitable candidates for microelectronic applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4890354</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-07, Vol.116 (3)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2126592767
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Absorption spectra
Applied physics
Coercivity
Cooling
Core making
Dipole interactions
Iron
Magnetic dipoles
Magnetic moments
Magnetism
Nanocomposites
Nanoparticles
Oxidation
Process management
Self-assembly
Silicon dioxide
Temperature dependence
X ray spectra
title Superferromagnetism in chain-like Fe@SiO2 nanoparticle ensembles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superferromagnetism%20in%20chain-like%20Fe@SiO2%20nanoparticle%20ensembles&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Zele%C5%88%C3%A1kov%C3%A1,%20A.&rft.date=2014-07-21&rft.volume=116&rft.issue=3&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4890354&rft_dat=%3Cproquest_cross%3E2126592767%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-f1c93e9d3007940d5effcb1f36730cac032bd215065a1534d1ea5c518cfbe7093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126592767&rft_id=info:pmid/&rfr_iscdi=true