Loading…
Artificial Neural Network and the Financial Markets: A Survey
This study describes the structure and function of a new financial modeling technique, namely, the Artificial Neutral Network (ANN) in predicting financial markets' behavior. With the advancement of the computer technology to date, ANN allows us to imitate human reasoning and thought processes...
Saved in:
Published in: | Managerial finance 2000, Vol.26 (12), p.32-45 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-e28ee805b2ed4de0ff5af1aa6343a7520416dbafa6b2a155e83b18f622336ac03 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-e28ee805b2ed4de0ff5af1aa6343a7520416dbafa6b2a155e83b18f622336ac03 |
container_end_page | 45 |
container_issue | 12 |
container_start_page | 32 |
container_title | Managerial finance |
container_volume | 26 |
creator | Chatterjee, Amitava Ayadi, O.Felix Boone, Bryan E |
description | This study describes the structure and function of a new financial modeling technique, namely, the Artificial Neutral Network (ANN) in predicting financial markets' behavior. With the advancement of the computer technology to date, ANN allows us to imitate human reasoning and thought processes in identifying the optimal trading strategies in the financial markets. The paper identifies the theory and steps involved in performing ANN and Generic Alogorithm in financial markets, the accuracy of the computer learning process, and the appropriate ways to use this process in developing trading strategies. It further discusses the superiority of ANN over traditional methodologies. The study concludes with the description of successful use of ANN by various financial institutions. |
doi_str_mv | 10.1108/03074350010767034 |
format | article |
fullrecord | <record><control><sourceid>proquest_istex</sourceid><recordid>TN_cdi_proquest_journals_212663288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31026599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-e28ee805b2ed4de0ff5af1aa6343a7520416dbafa6b2a155e83b18f622336ac03</originalsourceid><addsrcrecordid>eNqN0LtOwzAUBmALgUQpPABbxMAW8N0uEkOpKCAKCFFgtNzkRKRNk2InQN8et0EMMMB0JPv7ffkR2if4iBCsjzHDijOBMcFKKsz4BuoQJXSswvIm6qz24wD0Ntrxfhoc5UR00Gnf1XmWJ7ktolto3HrU75WbRbZMo_oFomFe2nINbqybQe1Pon700Lg3WO6ircwWHva-Zhc9Ds_Hg8t4dHdxNeiP4oRRXcdANYDGYkIh5SngLBM2I9ZKxplVgmJOZDqxmZUTaokQoNmE6ExSypi0CWZddNieu3DVawO-NvPcJ1AUtoSq8YYxroVm6m9IMJWi1wvw4AecVo0rwycMJVTK8G4dEGlR4irvHWRm4fK5dUtDsFnVbn7VHjJxm8l9DR_fgdCckYopYfgzNTdPGo_vxbU5Cx63HuYQ2k__ccUnoJGPeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212663288</pqid></control><display><type>article</type><title>Artificial Neural Network and the Financial Markets: A Survey</title><source>ABI/INFORM global</source><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Chatterjee, Amitava ; Ayadi, O.Felix ; Boone, Bryan E</creator><creatorcontrib>Chatterjee, Amitava ; Ayadi, O.Felix ; Boone, Bryan E</creatorcontrib><description>This study describes the structure and function of a new financial modeling technique, namely, the Artificial Neutral Network (ANN) in predicting financial markets' behavior. With the advancement of the computer technology to date, ANN allows us to imitate human reasoning and thought processes in identifying the optimal trading strategies in the financial markets. The paper identifies the theory and steps involved in performing ANN and Generic Alogorithm in financial markets, the accuracy of the computer learning process, and the appropriate ways to use this process in developing trading strategies. It further discusses the superiority of ANN over traditional methodologies. The study concludes with the description of successful use of ANN by various financial institutions.</description><identifier>ISSN: 0307-4358</identifier><identifier>EISSN: 1758-7743</identifier><identifier>DOI: 10.1108/03074350010767034</identifier><language>eng</language><publisher>Patrington: MCB UP Ltd</publisher><subject>Artificial intelligence ; Computers ; Decision making ; Discriminant analysis ; Estimates ; Financial institutions ; Financial markets ; Fourier transforms ; Genetic algorithms ; Information processing ; Investors ; Modelling ; Neural networks ; Power ; Regression analysis ; Securities markets ; Time series</subject><ispartof>Managerial finance, 2000, Vol.26 (12), p.32-45</ispartof><rights>MCB UP Limited</rights><rights>Copyright Barmarick Press 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-e28ee805b2ed4de0ff5af1aa6343a7520416dbafa6b2a155e83b18f622336ac03</citedby><cites>FETCH-LOGICAL-c328t-e28ee805b2ed4de0ff5af1aa6343a7520416dbafa6b2a155e83b18f622336ac03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/212663288/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/212663288?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,4010,11667,27900,27901,27902,36037,36038,44339,74638</link.rule.ids></links><search><creatorcontrib>Chatterjee, Amitava</creatorcontrib><creatorcontrib>Ayadi, O.Felix</creatorcontrib><creatorcontrib>Boone, Bryan E</creatorcontrib><title>Artificial Neural Network and the Financial Markets: A Survey</title><title>Managerial finance</title><description>This study describes the structure and function of a new financial modeling technique, namely, the Artificial Neutral Network (ANN) in predicting financial markets' behavior. With the advancement of the computer technology to date, ANN allows us to imitate human reasoning and thought processes in identifying the optimal trading strategies in the financial markets. The paper identifies the theory and steps involved in performing ANN and Generic Alogorithm in financial markets, the accuracy of the computer learning process, and the appropriate ways to use this process in developing trading strategies. It further discusses the superiority of ANN over traditional methodologies. The study concludes with the description of successful use of ANN by various financial institutions.</description><subject>Artificial intelligence</subject><subject>Computers</subject><subject>Decision making</subject><subject>Discriminant analysis</subject><subject>Estimates</subject><subject>Financial institutions</subject><subject>Financial markets</subject><subject>Fourier transforms</subject><subject>Genetic algorithms</subject><subject>Information processing</subject><subject>Investors</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Power</subject><subject>Regression analysis</subject><subject>Securities markets</subject><subject>Time series</subject><issn>0307-4358</issn><issn>1758-7743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqN0LtOwzAUBmALgUQpPABbxMAW8N0uEkOpKCAKCFFgtNzkRKRNk2InQN8et0EMMMB0JPv7ffkR2if4iBCsjzHDijOBMcFKKsz4BuoQJXSswvIm6qz24wD0Ntrxfhoc5UR00Gnf1XmWJ7ktolto3HrU75WbRbZMo_oFomFe2nINbqybQe1Pon700Lg3WO6ircwWHva-Zhc9Ds_Hg8t4dHdxNeiP4oRRXcdANYDGYkIh5SngLBM2I9ZKxplVgmJOZDqxmZUTaokQoNmE6ExSypi0CWZddNieu3DVawO-NvPcJ1AUtoSq8YYxroVm6m9IMJWi1wvw4AecVo0rwycMJVTK8G4dEGlR4irvHWRm4fK5dUtDsFnVbn7VHjJxm8l9DR_fgdCckYopYfgzNTdPGo_vxbU5Cx63HuYQ2k__ccUnoJGPeQ</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Chatterjee, Amitava</creator><creator>Ayadi, O.Felix</creator><creator>Boone, Bryan E</creator><general>MCB UP Ltd</general><general>Emerald Group Publishing Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>8AO</scope><scope>8FI</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>F~G</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0T</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2000</creationdate><title>Artificial Neural Network and the Financial Markets: A Survey</title><author>Chatterjee, Amitava ; Ayadi, O.Felix ; Boone, Bryan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-e28ee805b2ed4de0ff5af1aa6343a7520416dbafa6b2a155e83b18f622336ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial intelligence</topic><topic>Computers</topic><topic>Decision making</topic><topic>Discriminant analysis</topic><topic>Estimates</topic><topic>Financial institutions</topic><topic>Financial markets</topic><topic>Fourier transforms</topic><topic>Genetic algorithms</topic><topic>Information processing</topic><topic>Investors</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Power</topic><topic>Regression analysis</topic><topic>Securities markets</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, Amitava</creatorcontrib><creatorcontrib>Ayadi, O.Felix</creatorcontrib><creatorcontrib>Boone, Bryan E</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting & Tax Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central</collection><collection>Accounting, Tax & Banking Collection (ProQuest)</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM global</collection><collection>ProQuest Healthcare Administration Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Managerial finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatterjee, Amitava</au><au>Ayadi, O.Felix</au><au>Boone, Bryan E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network and the Financial Markets: A Survey</atitle><jtitle>Managerial finance</jtitle><date>2000</date><risdate>2000</risdate><volume>26</volume><issue>12</issue><spage>32</spage><epage>45</epage><pages>32-45</pages><issn>0307-4358</issn><eissn>1758-7743</eissn><abstract>This study describes the structure and function of a new financial modeling technique, namely, the Artificial Neutral Network (ANN) in predicting financial markets' behavior. With the advancement of the computer technology to date, ANN allows us to imitate human reasoning and thought processes in identifying the optimal trading strategies in the financial markets. The paper identifies the theory and steps involved in performing ANN and Generic Alogorithm in financial markets, the accuracy of the computer learning process, and the appropriate ways to use this process in developing trading strategies. It further discusses the superiority of ANN over traditional methodologies. The study concludes with the description of successful use of ANN by various financial institutions.</abstract><cop>Patrington</cop><pub>MCB UP Ltd</pub><doi>10.1108/03074350010767034</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-4358 |
ispartof | Managerial finance, 2000, Vol.26 (12), p.32-45 |
issn | 0307-4358 1758-7743 |
language | eng |
recordid | cdi_proquest_journals_212663288 |
source | ABI/INFORM global; Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list) |
subjects | Artificial intelligence Computers Decision making Discriminant analysis Estimates Financial institutions Financial markets Fourier transforms Genetic algorithms Information processing Investors Modelling Neural networks Power Regression analysis Securities markets Time series |
title | Artificial Neural Network and the Financial Markets: A Survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network%20and%20the%20Financial%20Markets:%20A%20Survey&rft.jtitle=Managerial%20finance&rft.au=Chatterjee,%20Amitava&rft.date=2000&rft.volume=26&rft.issue=12&rft.spage=32&rft.epage=45&rft.pages=32-45&rft.issn=0307-4358&rft.eissn=1758-7743&rft_id=info:doi/10.1108/03074350010767034&rft_dat=%3Cproquest_istex%3E31026599%3C/proquest_istex%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-e28ee805b2ed4de0ff5af1aa6343a7520416dbafa6b2a155e83b18f622336ac03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=212663288&rft_id=info:pmid/&rfr_iscdi=true |