Loading…

Artificial Neural Network and the Financial Markets: A Survey

This study describes the structure and function of a new financial modeling technique, namely, the Artificial Neutral Network (ANN) in predicting financial markets' behavior. With the advancement of the computer technology to date, ANN allows us to imitate human reasoning and thought processes...

Full description

Saved in:
Bibliographic Details
Published in:Managerial finance 2000, Vol.26 (12), p.32-45
Main Authors: Chatterjee, Amitava, Ayadi, O.Felix, Boone, Bryan E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-e28ee805b2ed4de0ff5af1aa6343a7520416dbafa6b2a155e83b18f622336ac03
cites cdi_FETCH-LOGICAL-c328t-e28ee805b2ed4de0ff5af1aa6343a7520416dbafa6b2a155e83b18f622336ac03
container_end_page 45
container_issue 12
container_start_page 32
container_title Managerial finance
container_volume 26
creator Chatterjee, Amitava
Ayadi, O.Felix
Boone, Bryan E
description This study describes the structure and function of a new financial modeling technique, namely, the Artificial Neutral Network (ANN) in predicting financial markets' behavior. With the advancement of the computer technology to date, ANN allows us to imitate human reasoning and thought processes in identifying the optimal trading strategies in the financial markets. The paper identifies the theory and steps involved in performing ANN and Generic Alogorithm in financial markets, the accuracy of the computer learning process, and the appropriate ways to use this process in developing trading strategies. It further discusses the superiority of ANN over traditional methodologies. The study concludes with the description of successful use of ANN by various financial institutions.
doi_str_mv 10.1108/03074350010767034
format article
fullrecord <record><control><sourceid>proquest_istex</sourceid><recordid>TN_cdi_proquest_journals_212663288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31026599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-e28ee805b2ed4de0ff5af1aa6343a7520416dbafa6b2a155e83b18f622336ac03</originalsourceid><addsrcrecordid>eNqN0LtOwzAUBmALgUQpPABbxMAW8N0uEkOpKCAKCFFgtNzkRKRNk2InQN8et0EMMMB0JPv7ffkR2if4iBCsjzHDijOBMcFKKsz4BuoQJXSswvIm6qz24wD0Ntrxfhoc5UR00Gnf1XmWJ7ktolto3HrU75WbRbZMo_oFomFe2nINbqybQe1Pon700Lg3WO6ircwWHva-Zhc9Ds_Hg8t4dHdxNeiP4oRRXcdANYDGYkIh5SngLBM2I9ZKxplVgmJOZDqxmZUTaokQoNmE6ExSypi0CWZddNieu3DVawO-NvPcJ1AUtoSq8YYxroVm6m9IMJWi1wvw4AecVo0rwycMJVTK8G4dEGlR4irvHWRm4fK5dUtDsFnVbn7VHjJxm8l9DR_fgdCckYopYfgzNTdPGo_vxbU5Cx63HuYQ2k__ccUnoJGPeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212663288</pqid></control><display><type>article</type><title>Artificial Neural Network and the Financial Markets: A Survey</title><source>ABI/INFORM global</source><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Chatterjee, Amitava ; Ayadi, O.Felix ; Boone, Bryan E</creator><creatorcontrib>Chatterjee, Amitava ; Ayadi, O.Felix ; Boone, Bryan E</creatorcontrib><description>This study describes the structure and function of a new financial modeling technique, namely, the Artificial Neutral Network (ANN) in predicting financial markets' behavior. With the advancement of the computer technology to date, ANN allows us to imitate human reasoning and thought processes in identifying the optimal trading strategies in the financial markets. The paper identifies the theory and steps involved in performing ANN and Generic Alogorithm in financial markets, the accuracy of the computer learning process, and the appropriate ways to use this process in developing trading strategies. It further discusses the superiority of ANN over traditional methodologies. The study concludes with the description of successful use of ANN by various financial institutions.</description><identifier>ISSN: 0307-4358</identifier><identifier>EISSN: 1758-7743</identifier><identifier>DOI: 10.1108/03074350010767034</identifier><language>eng</language><publisher>Patrington: MCB UP Ltd</publisher><subject>Artificial intelligence ; Computers ; Decision making ; Discriminant analysis ; Estimates ; Financial institutions ; Financial markets ; Fourier transforms ; Genetic algorithms ; Information processing ; Investors ; Modelling ; Neural networks ; Power ; Regression analysis ; Securities markets ; Time series</subject><ispartof>Managerial finance, 2000, Vol.26 (12), p.32-45</ispartof><rights>MCB UP Limited</rights><rights>Copyright Barmarick Press 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-e28ee805b2ed4de0ff5af1aa6343a7520416dbafa6b2a155e83b18f622336ac03</citedby><cites>FETCH-LOGICAL-c328t-e28ee805b2ed4de0ff5af1aa6343a7520416dbafa6b2a155e83b18f622336ac03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/212663288/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/212663288?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,4010,11667,27900,27901,27902,36037,36038,44339,74638</link.rule.ids></links><search><creatorcontrib>Chatterjee, Amitava</creatorcontrib><creatorcontrib>Ayadi, O.Felix</creatorcontrib><creatorcontrib>Boone, Bryan E</creatorcontrib><title>Artificial Neural Network and the Financial Markets: A Survey</title><title>Managerial finance</title><description>This study describes the structure and function of a new financial modeling technique, namely, the Artificial Neutral Network (ANN) in predicting financial markets' behavior. With the advancement of the computer technology to date, ANN allows us to imitate human reasoning and thought processes in identifying the optimal trading strategies in the financial markets. The paper identifies the theory and steps involved in performing ANN and Generic Alogorithm in financial markets, the accuracy of the computer learning process, and the appropriate ways to use this process in developing trading strategies. It further discusses the superiority of ANN over traditional methodologies. The study concludes with the description of successful use of ANN by various financial institutions.</description><subject>Artificial intelligence</subject><subject>Computers</subject><subject>Decision making</subject><subject>Discriminant analysis</subject><subject>Estimates</subject><subject>Financial institutions</subject><subject>Financial markets</subject><subject>Fourier transforms</subject><subject>Genetic algorithms</subject><subject>Information processing</subject><subject>Investors</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Power</subject><subject>Regression analysis</subject><subject>Securities markets</subject><subject>Time series</subject><issn>0307-4358</issn><issn>1758-7743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqN0LtOwzAUBmALgUQpPABbxMAW8N0uEkOpKCAKCFFgtNzkRKRNk2InQN8et0EMMMB0JPv7ffkR2if4iBCsjzHDijOBMcFKKsz4BuoQJXSswvIm6qz24wD0Ntrxfhoc5UR00Gnf1XmWJ7ktolto3HrU75WbRbZMo_oFomFe2nINbqybQe1Pon700Lg3WO6ircwWHva-Zhc9Ds_Hg8t4dHdxNeiP4oRRXcdANYDGYkIh5SngLBM2I9ZKxplVgmJOZDqxmZUTaokQoNmE6ExSypi0CWZddNieu3DVawO-NvPcJ1AUtoSq8YYxroVm6m9IMJWi1wvw4AecVo0rwycMJVTK8G4dEGlR4irvHWRm4fK5dUtDsFnVbn7VHjJxm8l9DR_fgdCckYopYfgzNTdPGo_vxbU5Cx63HuYQ2k__ccUnoJGPeQ</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Chatterjee, Amitava</creator><creator>Ayadi, O.Felix</creator><creator>Boone, Bryan E</creator><general>MCB UP Ltd</general><general>Emerald Group Publishing Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>8AO</scope><scope>8FI</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>F~G</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0T</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2000</creationdate><title>Artificial Neural Network and the Financial Markets: A Survey</title><author>Chatterjee, Amitava ; Ayadi, O.Felix ; Boone, Bryan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-e28ee805b2ed4de0ff5af1aa6343a7520416dbafa6b2a155e83b18f622336ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial intelligence</topic><topic>Computers</topic><topic>Decision making</topic><topic>Discriminant analysis</topic><topic>Estimates</topic><topic>Financial institutions</topic><topic>Financial markets</topic><topic>Fourier transforms</topic><topic>Genetic algorithms</topic><topic>Information processing</topic><topic>Investors</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Power</topic><topic>Regression analysis</topic><topic>Securities markets</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, Amitava</creatorcontrib><creatorcontrib>Ayadi, O.Felix</creatorcontrib><creatorcontrib>Boone, Bryan E</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting &amp; Tax Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central</collection><collection>Accounting, Tax &amp; Banking Collection (ProQuest)</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM global</collection><collection>ProQuest Healthcare Administration Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Managerial finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatterjee, Amitava</au><au>Ayadi, O.Felix</au><au>Boone, Bryan E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network and the Financial Markets: A Survey</atitle><jtitle>Managerial finance</jtitle><date>2000</date><risdate>2000</risdate><volume>26</volume><issue>12</issue><spage>32</spage><epage>45</epage><pages>32-45</pages><issn>0307-4358</issn><eissn>1758-7743</eissn><abstract>This study describes the structure and function of a new financial modeling technique, namely, the Artificial Neutral Network (ANN) in predicting financial markets' behavior. With the advancement of the computer technology to date, ANN allows us to imitate human reasoning and thought processes in identifying the optimal trading strategies in the financial markets. The paper identifies the theory and steps involved in performing ANN and Generic Alogorithm in financial markets, the accuracy of the computer learning process, and the appropriate ways to use this process in developing trading strategies. It further discusses the superiority of ANN over traditional methodologies. The study concludes with the description of successful use of ANN by various financial institutions.</abstract><cop>Patrington</cop><pub>MCB UP Ltd</pub><doi>10.1108/03074350010767034</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0307-4358
ispartof Managerial finance, 2000, Vol.26 (12), p.32-45
issn 0307-4358
1758-7743
language eng
recordid cdi_proquest_journals_212663288
source ABI/INFORM global; Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)
subjects Artificial intelligence
Computers
Decision making
Discriminant analysis
Estimates
Financial institutions
Financial markets
Fourier transforms
Genetic algorithms
Information processing
Investors
Modelling
Neural networks
Power
Regression analysis
Securities markets
Time series
title Artificial Neural Network and the Financial Markets: A Survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network%20and%20the%20Financial%20Markets:%20A%20Survey&rft.jtitle=Managerial%20finance&rft.au=Chatterjee,%20Amitava&rft.date=2000&rft.volume=26&rft.issue=12&rft.spage=32&rft.epage=45&rft.pages=32-45&rft.issn=0307-4358&rft.eissn=1758-7743&rft_id=info:doi/10.1108/03074350010767034&rft_dat=%3Cproquest_istex%3E31026599%3C/proquest_istex%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-e28ee805b2ed4de0ff5af1aa6343a7520416dbafa6b2a155e83b18f622336ac03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=212663288&rft_id=info:pmid/&rfr_iscdi=true