Loading…
Supports and extreme points in Lipschitz-free spaces
For a complete metric space \(M\), we prove that the finitely supported extreme points of the unit ball of the Lipschitz-free space \(\mathcal{F}(M)\) are precisely the elementary molecules \((\delta(p)-\delta(q))/d(p,q)\) defined by pairs of points \(p,q\) in \(M\) such that the triangle inequality...
Saved in:
Published in: | arXiv.org 2020-03 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Aliaga, Ramón J Pernecká, Eva |
description | For a complete metric space \(M\), we prove that the finitely supported extreme points of the unit ball of the Lipschitz-free space \(\mathcal{F}(M)\) are precisely the elementary molecules \((\delta(p)-\delta(q))/d(p,q)\) defined by pairs of points \(p,q\) in \(M\) such that the triangle inequality \(d(p,q) |
doi_str_mv | 10.48550/arxiv.1810.11278 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2126699467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126699467</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-2c663a4b826e5b9eed19824c6d3ec27d182b3825dbf273d60c1b260599a380543</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMgWGo_wN2A69Tk5r2U4gsGXNh9ySR3aEqdicmMFL_eAV0dOItzCLnjbCutUuzBl0v63nK7CM7B2CuyAiE4tRLghmxqPTHGQBtQSqyI_JhzHstUGz_EBi9TwU9s8piGRaWhaVOu4ZimH9oXxKZmH7Dekuvenytu_rkm--en_e6Vtu8vb7vHlnoFhkLQWnjZWdCoOocYubMgg44CA5jILXTCgopdD0ZEzQLvQDPlnBeWKSnW5P4vm8v4NWOdDqdxLsNyPAAHrZ2T2ohfbq9F4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126699467</pqid></control><display><type>article</type><title>Supports and extreme points in Lipschitz-free spaces</title><source>Access via ProQuest (Open Access)</source><creator>Aliaga, Ramón J ; Pernecká, Eva</creator><creatorcontrib>Aliaga, Ramón J ; Pernecká, Eva</creatorcontrib><description>For a complete metric space \(M\), we prove that the finitely supported extreme points of the unit ball of the Lipschitz-free space \(\mathcal{F}(M)\) are precisely the elementary molecules \((\delta(p)-\delta(q))/d(p,q)\) defined by pairs of points \(p,q\) in \(M\) such that the triangle inequality \(d(p,q)<d(p,r)+d(q,r)\) is strict for any \(r\in M\) different from \(p\) and \(q\). To this end, we show that the class of Lipschitz-free spaces over closed subsets of \(M\) is closed under arbitrary intersections when \(M\) has finite diameter, and that this allows a natural definition of the support of elements of \(\mathcal{F}(M)\).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1810.11278</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Intersections ; Metric space</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2126699467?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Aliaga, Ramón J</creatorcontrib><creatorcontrib>Pernecká, Eva</creatorcontrib><title>Supports and extreme points in Lipschitz-free spaces</title><title>arXiv.org</title><description>For a complete metric space \(M\), we prove that the finitely supported extreme points of the unit ball of the Lipschitz-free space \(\mathcal{F}(M)\) are precisely the elementary molecules \((\delta(p)-\delta(q))/d(p,q)\) defined by pairs of points \(p,q\) in \(M\) such that the triangle inequality \(d(p,q)<d(p,r)+d(q,r)\) is strict for any \(r\in M\) different from \(p\) and \(q\). To this end, we show that the class of Lipschitz-free spaces over closed subsets of \(M\) is closed under arbitrary intersections when \(M\) has finite diameter, and that this allows a natural definition of the support of elements of \(\mathcal{F}(M)\).</description><subject>Intersections</subject><subject>Metric space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKAzEUQIMgWGo_wN2A69Tk5r2U4gsGXNh9ySR3aEqdicmMFL_eAV0dOItzCLnjbCutUuzBl0v63nK7CM7B2CuyAiE4tRLghmxqPTHGQBtQSqyI_JhzHstUGz_EBi9TwU9s8piGRaWhaVOu4ZimH9oXxKZmH7Dekuvenytu_rkm--en_e6Vtu8vb7vHlnoFhkLQWnjZWdCoOocYubMgg44CA5jILXTCgopdD0ZEzQLvQDPlnBeWKSnW5P4vm8v4NWOdDqdxLsNyPAAHrZ2T2ohfbq9F4g</recordid><startdate>20200317</startdate><enddate>20200317</enddate><creator>Aliaga, Ramón J</creator><creator>Pernecká, Eva</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200317</creationdate><title>Supports and extreme points in Lipschitz-free spaces</title><author>Aliaga, Ramón J ; Pernecká, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-2c663a4b826e5b9eed19824c6d3ec27d182b3825dbf273d60c1b260599a380543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Intersections</topic><topic>Metric space</topic><toplevel>online_resources</toplevel><creatorcontrib>Aliaga, Ramón J</creatorcontrib><creatorcontrib>Pernecká, Eva</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliaga, Ramón J</au><au>Pernecká, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supports and extreme points in Lipschitz-free spaces</atitle><jtitle>arXiv.org</jtitle><date>2020-03-17</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>For a complete metric space \(M\), we prove that the finitely supported extreme points of the unit ball of the Lipschitz-free space \(\mathcal{F}(M)\) are precisely the elementary molecules \((\delta(p)-\delta(q))/d(p,q)\) defined by pairs of points \(p,q\) in \(M\) such that the triangle inequality \(d(p,q)<d(p,r)+d(q,r)\) is strict for any \(r\in M\) different from \(p\) and \(q\). To this end, we show that the class of Lipschitz-free spaces over closed subsets of \(M\) is closed under arbitrary intersections when \(M\) has finite diameter, and that this allows a natural definition of the support of elements of \(\mathcal{F}(M)\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1810.11278</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2126699467 |
source | Access via ProQuest (Open Access) |
subjects | Intersections Metric space |
title | Supports and extreme points in Lipschitz-free spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supports%20and%20extreme%20points%20in%20Lipschitz-free%20spaces&rft.jtitle=arXiv.org&rft.au=Aliaga,%20Ram%C3%B3n%20J&rft.date=2020-03-17&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1810.11278&rft_dat=%3Cproquest%3E2126699467%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-2c663a4b826e5b9eed19824c6d3ec27d182b3825dbf273d60c1b260599a380543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126699467&rft_id=info:pmid/&rfr_iscdi=true |