Loading…
Planar Hall effect in the Weyl semimetal GdPtBi
The recent discovery of Weyl and Dirac semimetals is one of the most important progresses in condensed matter physics. Among the very few available tools to characterize Weyl semimetals through electrical transport, negative magnetoresistance is most commonly used. Considering the shortcomings of th...
Saved in:
Published in: | Physical review. B 2018-07, Vol.98 (4), p.041103(R), Article 041103 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recent discovery of Weyl and Dirac semimetals is one of the most important progresses in condensed matter physics. Among the very few available tools to characterize Weyl semimetals through electrical transport, negative magnetoresistance is most commonly used. Considering the shortcomings of this method, new tools to characterize the chiral anomaly in Weyl semimetals are desirable. We employ the planar Hall effect (PHE) as an effective technique in the half Heusler Weyl semimetal GdPtBi to study the chiral anomaly. This compound exhibits a large value of 1.5 mΩcm planar Hall resistivity at 2 K and in 9 T. Our analysis reveals that the observed amplitude is dominated by Berry curvature and chiral anomaly contributions. Through angle-dependent transport studies we establish that GdPtBi with relatively small orbital magnetoresistance is an ideal candidate to observe the large PHE. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.98.041103 |