Loading…
Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond
We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, th...
Saved in:
Published in: | Physical review. B 2016-12, Vol.94 (22), p.214115 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 22 |
container_start_page | 214115 |
container_title | Physical review. B |
container_volume | 94 |
creator | Kepesidis, K V Lemonde, M-A Norambuena, A Maze, J R Rabl, P |
description | We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2126931039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126931039</sourcerecordid><originalsourceid>FETCH-proquest_journals_21269310393</originalsourceid><addsrcrecordid>eNqNi90KgkAQhZcoSMp3WOhaWLWM7S6k6AG6D1mnGrEZ21Gjt--H6rqrcw7fdwYqSOaZjazN7PDXF2asQpHKGBNnxi6NDVSZM9dIJ92cmZhE37A9f8dKrx130qLTHgR8z-g10AkJwL9Ob1mwRscU9YUryN21A2rBi0bSJRYXpnKqRseiFgg_OVGz7Waf76LG87UDaQ8Vd56e6JDESWbT2KQ2_c96AIhiSW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126931039</pqid></control><display><type>article</type><title>Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Kepesidis, K V ; Lemonde, M-A ; Norambuena, A ; Maze, J R ; Rabl, P</creator><creatorcontrib>Kepesidis, K V ; Lemonde, M-A ; Norambuena, A ; Maze, J R ; Rabl, P</creatorcontrib><description>We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Cooling ; Cooling effects ; Diamonds ; Driving conditions ; Laser cooling ; Mechanical systems ; Phonons ; Reservoir engineering ; Silicon ; Strain ; Vacancies</subject><ispartof>Physical review. B, 2016-12, Vol.94 (22), p.214115</ispartof><rights>Copyright American Physical Society Dec 1, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Kepesidis, K V</creatorcontrib><creatorcontrib>Lemonde, M-A</creatorcontrib><creatorcontrib>Norambuena, A</creatorcontrib><creatorcontrib>Maze, J R</creatorcontrib><creatorcontrib>Rabl, P</creatorcontrib><title>Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond</title><title>Physical review. B</title><description>We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available.</description><subject>Cooling</subject><subject>Cooling effects</subject><subject>Diamonds</subject><subject>Driving conditions</subject><subject>Laser cooling</subject><subject>Mechanical systems</subject><subject>Phonons</subject><subject>Reservoir engineering</subject><subject>Silicon</subject><subject>Strain</subject><subject>Vacancies</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNi90KgkAQhZcoSMp3WOhaWLWM7S6k6AG6D1mnGrEZ21Gjt--H6rqrcw7fdwYqSOaZjazN7PDXF2asQpHKGBNnxi6NDVSZM9dIJ92cmZhE37A9f8dKrx130qLTHgR8z-g10AkJwL9Ob1mwRscU9YUryN21A2rBi0bSJRYXpnKqRseiFgg_OVGz7Waf76LG87UDaQ8Vd56e6JDESWbT2KQ2_c96AIhiSW4</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Kepesidis, K V</creator><creator>Lemonde, M-A</creator><creator>Norambuena, A</creator><creator>Maze, J R</creator><creator>Rabl, P</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20161201</creationdate><title>Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond</title><author>Kepesidis, K V ; Lemonde, M-A ; Norambuena, A ; Maze, J R ; Rabl, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21269310393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cooling</topic><topic>Cooling effects</topic><topic>Diamonds</topic><topic>Driving conditions</topic><topic>Laser cooling</topic><topic>Mechanical systems</topic><topic>Phonons</topic><topic>Reservoir engineering</topic><topic>Silicon</topic><topic>Strain</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kepesidis, K V</creatorcontrib><creatorcontrib>Lemonde, M-A</creatorcontrib><creatorcontrib>Norambuena, A</creatorcontrib><creatorcontrib>Maze, J R</creatorcontrib><creatorcontrib>Rabl, P</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kepesidis, K V</au><au>Lemonde, M-A</au><au>Norambuena, A</au><au>Maze, J R</au><au>Rabl, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond</atitle><jtitle>Physical review. B</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>94</volume><issue>22</issue><spage>214115</spage><pages>214115-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available.</abstract><cop>College Park</cop><pub>American Physical Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2016-12, Vol.94 (22), p.214115 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2126931039 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Cooling Cooling effects Diamonds Driving conditions Laser cooling Mechanical systems Phonons Reservoir engineering Silicon Strain Vacancies |
title | Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooling%20phonons%20with%20phonons:%20Acoustic%20reservoir%20engineering%20with%20silicon-vacancy%20centers%20in%20diamond&rft.jtitle=Physical%20review.%20B&rft.au=Kepesidis,%20K%20V&rft.date=2016-12-01&rft.volume=94&rft.issue=22&rft.spage=214115&rft.pages=214115-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/&rft_dat=%3Cproquest%3E2126931039%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21269310393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126931039&rft_id=info:pmid/&rfr_iscdi=true |