Loading…

Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond

We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, th...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2016-12, Vol.94 (22), p.214115
Main Authors: Kepesidis, K V, Lemonde, M-A, Norambuena, A, Maze, J R, Rabl, P
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 22
container_start_page 214115
container_title Physical review. B
container_volume 94
creator Kepesidis, K V
Lemonde, M-A
Norambuena, A
Maze, J R
Rabl, P
description We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2126931039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126931039</sourcerecordid><originalsourceid>FETCH-proquest_journals_21269310393</originalsourceid><addsrcrecordid>eNqNi90KgkAQhZcoSMp3WOhaWLWM7S6k6AG6D1mnGrEZ21Gjt--H6rqrcw7fdwYqSOaZjazN7PDXF2asQpHKGBNnxi6NDVSZM9dIJ92cmZhE37A9f8dKrx130qLTHgR8z-g10AkJwL9Ob1mwRscU9YUryN21A2rBi0bSJRYXpnKqRseiFgg_OVGz7Waf76LG87UDaQ8Vd56e6JDESWbT2KQ2_c96AIhiSW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126931039</pqid></control><display><type>article</type><title>Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Kepesidis, K V ; Lemonde, M-A ; Norambuena, A ; Maze, J R ; Rabl, P</creator><creatorcontrib>Kepesidis, K V ; Lemonde, M-A ; Norambuena, A ; Maze, J R ; Rabl, P</creatorcontrib><description>We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Cooling ; Cooling effects ; Diamonds ; Driving conditions ; Laser cooling ; Mechanical systems ; Phonons ; Reservoir engineering ; Silicon ; Strain ; Vacancies</subject><ispartof>Physical review. B, 2016-12, Vol.94 (22), p.214115</ispartof><rights>Copyright American Physical Society Dec 1, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Kepesidis, K V</creatorcontrib><creatorcontrib>Lemonde, M-A</creatorcontrib><creatorcontrib>Norambuena, A</creatorcontrib><creatorcontrib>Maze, J R</creatorcontrib><creatorcontrib>Rabl, P</creatorcontrib><title>Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond</title><title>Physical review. B</title><description>We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available.</description><subject>Cooling</subject><subject>Cooling effects</subject><subject>Diamonds</subject><subject>Driving conditions</subject><subject>Laser cooling</subject><subject>Mechanical systems</subject><subject>Phonons</subject><subject>Reservoir engineering</subject><subject>Silicon</subject><subject>Strain</subject><subject>Vacancies</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNi90KgkAQhZcoSMp3WOhaWLWM7S6k6AG6D1mnGrEZ21Gjt--H6rqrcw7fdwYqSOaZjazN7PDXF2asQpHKGBNnxi6NDVSZM9dIJ92cmZhE37A9f8dKrx130qLTHgR8z-g10AkJwL9Ob1mwRscU9YUryN21A2rBi0bSJRYXpnKqRseiFgg_OVGz7Waf76LG87UDaQ8Vd56e6JDESWbT2KQ2_c96AIhiSW4</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Kepesidis, K V</creator><creator>Lemonde, M-A</creator><creator>Norambuena, A</creator><creator>Maze, J R</creator><creator>Rabl, P</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20161201</creationdate><title>Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond</title><author>Kepesidis, K V ; Lemonde, M-A ; Norambuena, A ; Maze, J R ; Rabl, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21269310393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cooling</topic><topic>Cooling effects</topic><topic>Diamonds</topic><topic>Driving conditions</topic><topic>Laser cooling</topic><topic>Mechanical systems</topic><topic>Phonons</topic><topic>Reservoir engineering</topic><topic>Silicon</topic><topic>Strain</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kepesidis, K V</creatorcontrib><creatorcontrib>Lemonde, M-A</creatorcontrib><creatorcontrib>Norambuena, A</creatorcontrib><creatorcontrib>Maze, J R</creatorcontrib><creatorcontrib>Rabl, P</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kepesidis, K V</au><au>Lemonde, M-A</au><au>Norambuena, A</au><au>Maze, J R</au><au>Rabl, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond</atitle><jtitle>Physical review. B</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>94</volume><issue>22</issue><spage>214115</spage><pages>214115-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available.</abstract><cop>College Park</cop><pub>American Physical Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2016-12, Vol.94 (22), p.214115
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2126931039
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Cooling
Cooling effects
Diamonds
Driving conditions
Laser cooling
Mechanical systems
Phonons
Reservoir engineering
Silicon
Strain
Vacancies
title Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooling%20phonons%20with%20phonons:%20Acoustic%20reservoir%20engineering%20with%20silicon-vacancy%20centers%20in%20diamond&rft.jtitle=Physical%20review.%20B&rft.au=Kepesidis,%20K%20V&rft.date=2016-12-01&rft.volume=94&rft.issue=22&rft.spage=214115&rft.pages=214115-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/&rft_dat=%3Cproquest%3E2126931039%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21269310393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126931039&rft_id=info:pmid/&rfr_iscdi=true