Loading…

Physical cosmological constant in asymptotically background-free quantum gravity

We study the effective potential in renormalizable quantum gravity with a single dimensionless conformal coupling without a Landau pole. In order to describe a background-free dynamics at the Planck scale and beyond, the conformal-factor field is quantized exactly in a nonperturbative manner. Since...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D 2017-07, Vol.96 (2), Article 026010
Main Authors: Hamada, Ken-ji, Matsuda, Mikoto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the effective potential in renormalizable quantum gravity with a single dimensionless conformal coupling without a Landau pole. In order to describe a background-free dynamics at the Planck scale and beyond, the conformal-factor field is quantized exactly in a nonperturbative manner. Since this field does not receive renormalization, the field-independent constant in the effective potential becomes itself invariant under the renormalization group flow. That is to say, it gives the physical cosmological constant. We explicitly calculate the physical cosmological constant at the one-loop level in the Landau gauge. We find that it is given by a function of renormalized quantities of the cosmological constant, the Planck mass, and the coupling constant, and it should be the observed value. It will give a new perspective on the cosmological constant problem free from an ultraviolet cutoff.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.96.026010