Loading…

Tumor necrosis factor-α promotes in vitro calcification of vascular cells via the cAMP pathway

Vascular calcification is an ectopic calcification that commonly occurs in atherosclerosis. Because tumor necrosis factor-alpha (TNF-alpha), a pleiotropic cytokine found in atherosclerotic lesions, is also a regulator of bone formation, we investigated the role of TNF-alpha in in vitro vascular calc...

Full description

Saved in:
Bibliographic Details
Published in:Circulation (New York, N.Y.) N.Y.), 2000-11, Vol.102 (21), p.2636-2642
Main Authors: TINTUT, Yin, PATEL, Jignesh, PARHAMI, Farhad, DEMER, Linda L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vascular calcification is an ectopic calcification that commonly occurs in atherosclerosis. Because tumor necrosis factor-alpha (TNF-alpha), a pleiotropic cytokine found in atherosclerotic lesions, is also a regulator of bone formation, we investigated the role of TNF-alpha in in vitro vascular calcification. A cloned subpopulation of bovine aortic smooth muscle cells previously shown capable of osteoblastic differentiation was treated with TNF-alpha, and osteoblastic differentiation and mineralization were assessed. Treatment of vascular cells with TNF-alpha for 3 days induced an osteoblast-like morphology. It also enhanced both activity and mRNA expression of alkaline phosphatase, an early marker of osteoblastic differentiation. Continuous treatment with TNF-alpha for 10 days enhanced matrix mineralization as measured by radiolabeled calcium incorporation in the matrix. Pretreatment of cells with a protein kinase A-specific inhibitor, KT5720, attenuated cell morphology, the alkaline phosphatase activity, and mineralization induced by TNF-alpha. Consistent with this, the intracellular cAMP level was elevated after TNF-alpha treatment. Electrophoretic mobility shift assay demonstrated that TNF-alpha enhanced DNA binding of osteoblast specific factor (Osf2), AP1, and CREB, transcription factors that are important for osteoblastic differentiation. These results suggest that TNF-alpha enhances in vitro vascular calcification by promoting osteoblastic differentiation of vascular cells through the cAMP pathway.
ISSN:0009-7322
1524-4539
DOI:10.1161/01.CIR.102.21.2636