Loading…
Investigation of on-current degradation behavior induced by surface hydrolysis effect under negative gate bias stress in amorphous InGaZnO thin-film transistors
This study investigates the electrical instability under negative gate bias stress (NGBS) induced by surface hydrolysis effect. Electrical characteristics exhibit instability for amorphous InGaZnO (a-IGZO) Thin Film Transistors (TFTs) under NGBS, in which on-current degradation and current crowding...
Saved in:
Published in: | Applied physics letters 2014-03, Vol.104 (10) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigates the electrical instability under negative gate bias stress (NGBS) induced by surface hydrolysis effect. Electrical characteristics exhibit instability for amorphous InGaZnO (a-IGZO) Thin Film Transistors (TFTs) under NGBS, in which on-current degradation and current crowding phenomenon can be observed. When the negative gate bias is applied on the TFT, hydrogen ions will dissociate from ZnO-H bonds and the dissociated hydrogen ions will cause electrical instability under NGBS. The ISE-Technology Computer Aided Design simulation tool and moisture partial pressure modulation measurement are utilized to clarify the anomalous degradation behavior. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4863682 |