Loading…
Reverse engineering of ECT probes for nondestructive evaluation of moving conductors
Numerical modeling of commercial ECT equipment requires preparatory work in reverse engineering. The reconstruction of given ECT probes was performed in terms of (i) geometry, (ii) material properties and source parameters, (iii) impedance computation. High-resolution X-ray images were taken in orde...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Numerical modeling of commercial ECT equipment requires preparatory work in reverse engineering. The reconstruction of given ECT probes was performed in terms of (i) geometry, (ii) material properties and source parameters, (iii) impedance computation. High-resolution X-ray images were taken in order to build appropriate CAD models of given ECT probes. An optimization strategy was applied in order to estimate the permeability of the magnetic shield as well as the supply current by means of measurement data of the magnetic flux density. Subsequently, normalized impedance calculations were performed and compared to measurements in generic benchmark models containing artificial defects. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4865003 |