Loading…

Exchange bias and crystal structure of epitaxial (111) FePt/BiFeO3 sputtered thin films

Crystallographic structure and magnetic properties of the epitaxial FePt (10 nm)/BiFeO3 (BFO) (10 nm) bilayer films grown on (111) SrTiO3 (STO) substrates with different deposition temperatures of FePt layers (Td) have been investigated using magnetron sputtering. Out-of-plane radial scan along (111...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2014-05, Vol.115 (17)
Main Authors: Chiu, Shang-Jui, Huang, Li-Chun, Hsiao, Shih-Nan, Chang, Huang-Wei, Yu, Ge-Ping, Lee, Hsin-Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Crystallographic structure and magnetic properties of the epitaxial FePt (10 nm)/BiFeO3 (BFO) (10 nm) bilayer films grown on (111) SrTiO3 (STO) substrates with different deposition temperatures of FePt layers (Td) have been investigated using magnetron sputtering. Out-of-plane radial scan along (111) direction and off-normal (002) azimuthal scan, determined by synchrotron radiation x-ray diffractometry, evidence that the FePt layers were well epitaxially grown on the (111) epitaxial BFO layers for the samples with Td = 300 and 700 °C. On the contrary, for the bilayer films with Td = 500 °C, the FePt and BFO layers exhibit low epitaxial quality. Large in-plane exchange bias field (Heb) values of 45–412 Oe are obtained for the L10-FePt/BFO bilayer films measured with applied field of 12 kOe at room temperature. The change of effective interfacial area, observed by scanning electron microscopy, between FePt island-like particles and BFO continuous layers, and epitaxiality of the bilayer were correlated with the evolution of Heb.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4863171