Loading…

All-aqueous multiphase microfluidics

Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immisci...

Full description

Saved in:
Bibliographic Details
Published in:Biomicrofluidics 2013-11, Vol.7 (6), p.61301-61301
Main Authors: Song, Yang, Sauret, Alban, Cheung Shum, Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c473t-6016b5b754d7629b582cca169c24652b245f7017625d7439afda258fe44b76d33
cites cdi_FETCH-LOGICAL-c473t-6016b5b754d7629b582cca169c24652b245f7017625d7439afda258fe44b76d33
container_end_page 61301
container_issue 6
container_start_page 61301
container_title Biomicrofluidics
container_volume 7
creator Song, Yang
Sauret, Alban
Cheung Shum, Ho
description Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering.
doi_str_mv 10.1063/1.4827916
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2127763032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1492687838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-6016b5b754d7629b582cca169c24652b245f7017625d7439afda258fe44b76d33</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMotlYX_gEp6EKFqXknsxFK8QUFN7oOmcyMTZmZ1GSm4L83pbVWBVf3wvk4954DwCmCIwQ5uUEjKrFIEd8DfZQSnCDI5P7O3gNHIcwhZEhgfAh6mFJGOUz74GJcVYl-7wrXhWHdVa1dzHQohrU13pVVZ3NrwjE4KHUVipPNHIDX-7uXyWMyfX54moyniaGCtAmHiGcsE4zmguM0YxIboxFPDaac4QxTVgqIosZyQUmqy1xjJsuC0kzwnJABuF37LrqsLnJTNK3XlVp4W2v_oZy26qfS2Jl6c0tFpJSUiWhwuTHwLmYKraptMEVV6WYVUCGaYi6FJDKi57_Quet8E-MpjLAQnECCI3W1pmIbIfii3D6DoFp1r5DadB_Zs93vt-RX2RG4XgPB2Fa31jVbZun8t5Na5OV_8N_Tn9GimM8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127763032</pqid></control><display><type>article</type><title>All-aqueous multiphase microfluidics</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>PubMed Central</source><creator>Song, Yang ; Sauret, Alban ; Cheung Shum, Ho</creator><creatorcontrib>Song, Yang ; Sauret, Alban ; Cheung Shum, Ho</creatorcontrib><description>Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/1.4827916</identifier><identifier>PMID: 24454609</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Biocompatibility ; Biomedical engineering ; Biomedical materials ; Chemical synthesis ; Cytoplasm ; Emulsions ; Interfacial properties ; Materials engineering ; Microfluidics ; Miscibility ; Multiphase ; Organic chemistry ; Phases ; Surface tension</subject><ispartof>Biomicrofluidics, 2013-11, Vol.7 (6), p.61301-61301</ispartof><rights>AIP Publishing LLC</rights><rights>2013 AIP Publishing LLC.</rights><rights>Copyright © 2013 AIP Publishing LLC 2013 AIP Publishing LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-6016b5b754d7629b582cca169c24652b245f7017625d7439afda258fe44b76d33</citedby><cites>FETCH-LOGICAL-c473t-6016b5b754d7629b582cca169c24652b245f7017625d7439afda258fe44b76d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888457/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888457/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24454609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Sauret, Alban</creatorcontrib><creatorcontrib>Cheung Shum, Ho</creatorcontrib><title>All-aqueous multiphase microfluidics</title><title>Biomicrofluidics</title><addtitle>Biomicrofluidics</addtitle><description>Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering.</description><subject>Biocompatibility</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Chemical synthesis</subject><subject>Cytoplasm</subject><subject>Emulsions</subject><subject>Interfacial properties</subject><subject>Materials engineering</subject><subject>Microfluidics</subject><subject>Miscibility</subject><subject>Multiphase</subject><subject>Organic chemistry</subject><subject>Phases</subject><subject>Surface tension</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMotlYX_gEp6EKFqXknsxFK8QUFN7oOmcyMTZmZ1GSm4L83pbVWBVf3wvk4954DwCmCIwQ5uUEjKrFIEd8DfZQSnCDI5P7O3gNHIcwhZEhgfAh6mFJGOUz74GJcVYl-7wrXhWHdVa1dzHQohrU13pVVZ3NrwjE4KHUVipPNHIDX-7uXyWMyfX54moyniaGCtAmHiGcsE4zmguM0YxIboxFPDaac4QxTVgqIosZyQUmqy1xjJsuC0kzwnJABuF37LrqsLnJTNK3XlVp4W2v_oZy26qfS2Jl6c0tFpJSUiWhwuTHwLmYKraptMEVV6WYVUCGaYi6FJDKi57_Quet8E-MpjLAQnECCI3W1pmIbIfii3D6DoFp1r5DadB_Zs93vt-RX2RG4XgPB2Fa31jVbZun8t5Na5OV_8N_Tn9GimM8</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Song, Yang</creator><creator>Sauret, Alban</creator><creator>Cheung Shum, Ho</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131101</creationdate><title>All-aqueous multiphase microfluidics</title><author>Song, Yang ; Sauret, Alban ; Cheung Shum, Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-6016b5b754d7629b582cca169c24652b245f7017625d7439afda258fe44b76d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biocompatibility</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Chemical synthesis</topic><topic>Cytoplasm</topic><topic>Emulsions</topic><topic>Interfacial properties</topic><topic>Materials engineering</topic><topic>Microfluidics</topic><topic>Miscibility</topic><topic>Multiphase</topic><topic>Organic chemistry</topic><topic>Phases</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Sauret, Alban</creatorcontrib><creatorcontrib>Cheung Shum, Ho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yang</au><au>Sauret, Alban</au><au>Cheung Shum, Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-aqueous multiphase microfluidics</atitle><jtitle>Biomicrofluidics</jtitle><addtitle>Biomicrofluidics</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>7</volume><issue>6</issue><spage>61301</spage><epage>61301</epage><pages>61301-61301</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24454609</pmid><doi>10.1063/1.4827916</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-1058
ispartof Biomicrofluidics, 2013-11, Vol.7 (6), p.61301-61301
issn 1932-1058
1932-1058
language eng
recordid cdi_proquest_journals_2127763032
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); PubMed Central
subjects Biocompatibility
Biomedical engineering
Biomedical materials
Chemical synthesis
Cytoplasm
Emulsions
Interfacial properties
Materials engineering
Microfluidics
Miscibility
Multiphase
Organic chemistry
Phases
Surface tension
title All-aqueous multiphase microfluidics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-aqueous%20multiphase%20microfluidics&rft.jtitle=Biomicrofluidics&rft.au=Song,%20Yang&rft.date=2013-11-01&rft.volume=7&rft.issue=6&rft.spage=61301&rft.epage=61301&rft.pages=61301-61301&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/1.4827916&rft_dat=%3Cproquest_pubme%3E1492687838%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-6016b5b754d7629b582cca169c24652b245f7017625d7439afda258fe44b76d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2127763032&rft_id=info:pmid/24454609&rfr_iscdi=true