Loading…
All-aqueous multiphase microfluidics
Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immisci...
Saved in:
Published in: | Biomicrofluidics 2013-11, Vol.7 (6), p.61301-61301 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c473t-6016b5b754d7629b582cca169c24652b245f7017625d7439afda258fe44b76d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c473t-6016b5b754d7629b582cca169c24652b245f7017625d7439afda258fe44b76d33 |
container_end_page | 61301 |
container_issue | 6 |
container_start_page | 61301 |
container_title | Biomicrofluidics |
container_volume | 7 |
creator | Song, Yang Sauret, Alban Cheung Shum, Ho |
description | Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering. |
doi_str_mv | 10.1063/1.4827916 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2127763032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1492687838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-6016b5b754d7629b582cca169c24652b245f7017625d7439afda258fe44b76d33</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMotlYX_gEp6EKFqXknsxFK8QUFN7oOmcyMTZmZ1GSm4L83pbVWBVf3wvk4954DwCmCIwQ5uUEjKrFIEd8DfZQSnCDI5P7O3gNHIcwhZEhgfAh6mFJGOUz74GJcVYl-7wrXhWHdVa1dzHQohrU13pVVZ3NrwjE4KHUVipPNHIDX-7uXyWMyfX54moyniaGCtAmHiGcsE4zmguM0YxIboxFPDaac4QxTVgqIosZyQUmqy1xjJsuC0kzwnJABuF37LrqsLnJTNK3XlVp4W2v_oZy26qfS2Jl6c0tFpJSUiWhwuTHwLmYKraptMEVV6WYVUCGaYi6FJDKi57_Quet8E-MpjLAQnECCI3W1pmIbIfii3D6DoFp1r5DadB_Zs93vt-RX2RG4XgPB2Fa31jVbZun8t5Na5OV_8N_Tn9GimM8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127763032</pqid></control><display><type>article</type><title>All-aqueous multiphase microfluidics</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>PubMed Central</source><creator>Song, Yang ; Sauret, Alban ; Cheung Shum, Ho</creator><creatorcontrib>Song, Yang ; Sauret, Alban ; Cheung Shum, Ho</creatorcontrib><description>Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/1.4827916</identifier><identifier>PMID: 24454609</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Biocompatibility ; Biomedical engineering ; Biomedical materials ; Chemical synthesis ; Cytoplasm ; Emulsions ; Interfacial properties ; Materials engineering ; Microfluidics ; Miscibility ; Multiphase ; Organic chemistry ; Phases ; Surface tension</subject><ispartof>Biomicrofluidics, 2013-11, Vol.7 (6), p.61301-61301</ispartof><rights>AIP Publishing LLC</rights><rights>2013 AIP Publishing LLC.</rights><rights>Copyright © 2013 AIP Publishing LLC 2013 AIP Publishing LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-6016b5b754d7629b582cca169c24652b245f7017625d7439afda258fe44b76d33</citedby><cites>FETCH-LOGICAL-c473t-6016b5b754d7629b582cca169c24652b245f7017625d7439afda258fe44b76d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888457/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888457/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24454609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Sauret, Alban</creatorcontrib><creatorcontrib>Cheung Shum, Ho</creatorcontrib><title>All-aqueous multiphase microfluidics</title><title>Biomicrofluidics</title><addtitle>Biomicrofluidics</addtitle><description>Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering.</description><subject>Biocompatibility</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Chemical synthesis</subject><subject>Cytoplasm</subject><subject>Emulsions</subject><subject>Interfacial properties</subject><subject>Materials engineering</subject><subject>Microfluidics</subject><subject>Miscibility</subject><subject>Multiphase</subject><subject>Organic chemistry</subject><subject>Phases</subject><subject>Surface tension</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMotlYX_gEp6EKFqXknsxFK8QUFN7oOmcyMTZmZ1GSm4L83pbVWBVf3wvk4954DwCmCIwQ5uUEjKrFIEd8DfZQSnCDI5P7O3gNHIcwhZEhgfAh6mFJGOUz74GJcVYl-7wrXhWHdVa1dzHQohrU13pVVZ3NrwjE4KHUVipPNHIDX-7uXyWMyfX54moyniaGCtAmHiGcsE4zmguM0YxIboxFPDaac4QxTVgqIosZyQUmqy1xjJsuC0kzwnJABuF37LrqsLnJTNK3XlVp4W2v_oZy26qfS2Jl6c0tFpJSUiWhwuTHwLmYKraptMEVV6WYVUCGaYi6FJDKi57_Quet8E-MpjLAQnECCI3W1pmIbIfii3D6DoFp1r5DadB_Zs93vt-RX2RG4XgPB2Fa31jVbZun8t5Na5OV_8N_Tn9GimM8</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Song, Yang</creator><creator>Sauret, Alban</creator><creator>Cheung Shum, Ho</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131101</creationdate><title>All-aqueous multiphase microfluidics</title><author>Song, Yang ; Sauret, Alban ; Cheung Shum, Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-6016b5b754d7629b582cca169c24652b245f7017625d7439afda258fe44b76d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biocompatibility</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Chemical synthesis</topic><topic>Cytoplasm</topic><topic>Emulsions</topic><topic>Interfacial properties</topic><topic>Materials engineering</topic><topic>Microfluidics</topic><topic>Miscibility</topic><topic>Multiphase</topic><topic>Organic chemistry</topic><topic>Phases</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Sauret, Alban</creatorcontrib><creatorcontrib>Cheung Shum, Ho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yang</au><au>Sauret, Alban</au><au>Cheung Shum, Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-aqueous multiphase microfluidics</atitle><jtitle>Biomicrofluidics</jtitle><addtitle>Biomicrofluidics</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>7</volume><issue>6</issue><spage>61301</spage><epage>61301</epage><pages>61301-61301</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24454609</pmid><doi>10.1063/1.4827916</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-1058 |
ispartof | Biomicrofluidics, 2013-11, Vol.7 (6), p.61301-61301 |
issn | 1932-1058 1932-1058 |
language | eng |
recordid | cdi_proquest_journals_2127763032 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); PubMed Central |
subjects | Biocompatibility Biomedical engineering Biomedical materials Chemical synthesis Cytoplasm Emulsions Interfacial properties Materials engineering Microfluidics Miscibility Multiphase Organic chemistry Phases Surface tension |
title | All-aqueous multiphase microfluidics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-aqueous%20multiphase%20microfluidics&rft.jtitle=Biomicrofluidics&rft.au=Song,%20Yang&rft.date=2013-11-01&rft.volume=7&rft.issue=6&rft.spage=61301&rft.epage=61301&rft.pages=61301-61301&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/1.4827916&rft_dat=%3Cproquest_pubme%3E1492687838%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-6016b5b754d7629b582cca169c24652b245f7017625d7439afda258fe44b76d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2127763032&rft_id=info:pmid/24454609&rfr_iscdi=true |