Loading…
Investigation of tunnel field-effect transistors as a capacitor-less memory cell
In this work, we report experimental results on the use of tunnel field-effect transistors as capacitorless dynamic random access memory cells, implemented as double-gate fully depleted silicon-on-insulator devices. The devices have an asymmetric design, with a partial overlap of the top gate (LG) a...
Saved in:
Published in: | Applied physics letters 2014-03, Vol.104 (9) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we report experimental results on the use of tunnel field-effect transistors as capacitorless dynamic random access memory cells, implemented as double-gate fully depleted silicon-on-insulator devices. The devices have an asymmetric design, with a partial overlap of the top gate (LG) and with a total overlap of the back gate over the channel region (LG + LIN). A potential well is created by biasing the back gate (VBG) in accumulation, while the front gate (VFG) is in inversion. Holes from the p+ source are injected by the forward-biased p+ i junction and stored in the electrically induced potential well. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4867527 |