Loading…

A Wiener-Process-Model-Based Method for Remaining Useful Life Prediction Considering Unit-to-Unit Variability

Remaining useful life (RUL) prediction has attracted more and more attention in recent years because of its significance in predictive maintenance. The degradation processes of systems from the same population are generally different from one another due to their various operational conditions and h...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2019-03, Vol.66 (3), p.2092-2101
Main Authors: Li, Naipeng, Lei, Yaguo, Yan, Tao, Li, Ningbo, Han, Tianyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-52828f25471c81538f1fac999eb28090d7cddce78917cd2138a1b1f4937d8f2a3
cites cdi_FETCH-LOGICAL-c338t-52828f25471c81538f1fac999eb28090d7cddce78917cd2138a1b1f4937d8f2a3
container_end_page 2101
container_issue 3
container_start_page 2092
container_title IEEE transactions on industrial electronics (1982)
container_volume 66
creator Li, Naipeng
Lei, Yaguo
Yan, Tao
Li, Ningbo
Han, Tianyu
description Remaining useful life (RUL) prediction has attracted more and more attention in recent years because of its significance in predictive maintenance. The degradation processes of systems from the same population are generally different from one another due to their various operational conditions and health states. This behavior is defined as unit-to-unit variability (UtUV), which brings difficulty to RUL prediction. To handle this problem, this paper develops a Wiener-process-model (WPM)-based method for RUL prediction with the consideration of the UtUV. In this method, an age- and state-dependent WPM is specially designed to describe the various degradation processes of different units. A unit maximum likelihood estimation (UMLE) algorithm is proposed to estimate the UtUV parameter according to the measurements of training units, without any restriction to the distribution pattern of the parameter. The UtUV parameter is further updated via particle filtering (PF) according to the measurements of the testing unit. In the particle updating process, a fuzzy resampling algorithm is developed to handle the sample impoverishment problem of PF. With the updated parameter, the RUL is predicted through a degradation process simulation algorithm. The effectiveness of the proposed method is verified through a simulation study and a turbofan engine degradation dataset.
doi_str_mv 10.1109/TIE.2018.2838078
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127985880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8365144</ieee_id><sourcerecordid>2127985880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-52828f25471c81538f1fac999eb28090d7cddce78917cd2138a1b1f4937d8f2a3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWB97wU3AdWpuMuncLLX4gooiVpdDOrnRSDvRZLrw3zu14urcxXfOhY-xE5BjAGnPn--uxkoCjhVqlDXusBEYUwtrK9xlI6lqFFJWk312UMqHlFAZMCO2uuCvkTrK4jGnlkoR98nTUly6Qp7fU_-ePA8p8ydaudjF7o3PC4X1ks9iIP6Yyce2j6nj09SV6Cn_Il3sRZ_EJvmLy9Et4jL230dsL7hloeO_PGTz66vn6a2YPdzcTS9motUae2EUKgzKVDW0CEZjgOBaay0tFEorfd1631KNFoZLgUYHCwiV1bUfek4fsrPt7mdOX2sqffOR1rkbXjYKVG3RIMqBkluqzamUTKH5zHHl8ncDstlIbQapzUZq8yd1qJxuK5GI_nHUEwNVpX8ADItywg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127985880</pqid></control><display><type>article</type><title>A Wiener-Process-Model-Based Method for Remaining Useful Life Prediction Considering Unit-to-Unit Variability</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Naipeng ; Lei, Yaguo ; Yan, Tao ; Li, Ningbo ; Han, Tianyu</creator><creatorcontrib>Li, Naipeng ; Lei, Yaguo ; Yan, Tao ; Li, Ningbo ; Han, Tianyu</creatorcontrib><description>Remaining useful life (RUL) prediction has attracted more and more attention in recent years because of its significance in predictive maintenance. The degradation processes of systems from the same population are generally different from one another due to their various operational conditions and health states. This behavior is defined as unit-to-unit variability (UtUV), which brings difficulty to RUL prediction. To handle this problem, this paper develops a Wiener-process-model (WPM)-based method for RUL prediction with the consideration of the UtUV. In this method, an age- and state-dependent WPM is specially designed to describe the various degradation processes of different units. A unit maximum likelihood estimation (UMLE) algorithm is proposed to estimate the UtUV parameter according to the measurements of training units, without any restriction to the distribution pattern of the parameter. The UtUV parameter is further updated via particle filtering (PF) according to the measurements of the testing unit. In the particle updating process, a fuzzy resampling algorithm is developed to handle the sample impoverishment problem of PF. With the updated parameter, the RUL is predicted through a degradation process simulation algorithm. The effectiveness of the proposed method is verified through a simulation study and a turbofan engine degradation dataset.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2018.2838078</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computer simulation ; Degradation ; Filtration ; Life prediction ; Mathematical models ; Maximum likelihood estimation ; Modeling ; Parameter estimation ; Particle filtering (PF) ; Prediction algorithms ; Predictive maintenance ; Predictive models ; remaining useful life (RUL) prediction ; Resampling ; Trajectory ; Turbofan engines ; unit maximum likelihood estimation (UMLE) ; unit-to-unit variability (UtUV) ; Useful life ; Wiener process model (WPM)</subject><ispartof>IEEE transactions on industrial electronics (1982), 2019-03, Vol.66 (3), p.2092-2101</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-52828f25471c81538f1fac999eb28090d7cddce78917cd2138a1b1f4937d8f2a3</citedby><cites>FETCH-LOGICAL-c338t-52828f25471c81538f1fac999eb28090d7cddce78917cd2138a1b1f4937d8f2a3</cites><orcidid>0000-0002-5167-1459 ; 0000-0002-6837-4901 ; 0000-0002-3328-2118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8365144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, Naipeng</creatorcontrib><creatorcontrib>Lei, Yaguo</creatorcontrib><creatorcontrib>Yan, Tao</creatorcontrib><creatorcontrib>Li, Ningbo</creatorcontrib><creatorcontrib>Han, Tianyu</creatorcontrib><title>A Wiener-Process-Model-Based Method for Remaining Useful Life Prediction Considering Unit-to-Unit Variability</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Remaining useful life (RUL) prediction has attracted more and more attention in recent years because of its significance in predictive maintenance. The degradation processes of systems from the same population are generally different from one another due to their various operational conditions and health states. This behavior is defined as unit-to-unit variability (UtUV), which brings difficulty to RUL prediction. To handle this problem, this paper develops a Wiener-process-model (WPM)-based method for RUL prediction with the consideration of the UtUV. In this method, an age- and state-dependent WPM is specially designed to describe the various degradation processes of different units. A unit maximum likelihood estimation (UMLE) algorithm is proposed to estimate the UtUV parameter according to the measurements of training units, without any restriction to the distribution pattern of the parameter. The UtUV parameter is further updated via particle filtering (PF) according to the measurements of the testing unit. In the particle updating process, a fuzzy resampling algorithm is developed to handle the sample impoverishment problem of PF. With the updated parameter, the RUL is predicted through a degradation process simulation algorithm. The effectiveness of the proposed method is verified through a simulation study and a turbofan engine degradation dataset.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Degradation</subject><subject>Filtration</subject><subject>Life prediction</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Modeling</subject><subject>Parameter estimation</subject><subject>Particle filtering (PF)</subject><subject>Prediction algorithms</subject><subject>Predictive maintenance</subject><subject>Predictive models</subject><subject>remaining useful life (RUL) prediction</subject><subject>Resampling</subject><subject>Trajectory</subject><subject>Turbofan engines</subject><subject>unit maximum likelihood estimation (UMLE)</subject><subject>unit-to-unit variability (UtUV)</subject><subject>Useful life</subject><subject>Wiener process model (WPM)</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWB97wU3AdWpuMuncLLX4gooiVpdDOrnRSDvRZLrw3zu14urcxXfOhY-xE5BjAGnPn--uxkoCjhVqlDXusBEYUwtrK9xlI6lqFFJWk312UMqHlFAZMCO2uuCvkTrK4jGnlkoR98nTUly6Qp7fU_-ePA8p8ydaudjF7o3PC4X1ks9iIP6Yyce2j6nj09SV6Cn_Il3sRZ_EJvmLy9Et4jL230dsL7hloeO_PGTz66vn6a2YPdzcTS9motUae2EUKgzKVDW0CEZjgOBaay0tFEorfd1631KNFoZLgUYHCwiV1bUfek4fsrPt7mdOX2sqffOR1rkbXjYKVG3RIMqBkluqzamUTKH5zHHl8ncDstlIbQapzUZq8yd1qJxuK5GI_nHUEwNVpX8ADItywg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Li, Naipeng</creator><creator>Lei, Yaguo</creator><creator>Yan, Tao</creator><creator>Li, Ningbo</creator><creator>Han, Tianyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5167-1459</orcidid><orcidid>https://orcid.org/0000-0002-6837-4901</orcidid><orcidid>https://orcid.org/0000-0002-3328-2118</orcidid></search><sort><creationdate>20190301</creationdate><title>A Wiener-Process-Model-Based Method for Remaining Useful Life Prediction Considering Unit-to-Unit Variability</title><author>Li, Naipeng ; Lei, Yaguo ; Yan, Tao ; Li, Ningbo ; Han, Tianyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-52828f25471c81538f1fac999eb28090d7cddce78917cd2138a1b1f4937d8f2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Degradation</topic><topic>Filtration</topic><topic>Life prediction</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Modeling</topic><topic>Parameter estimation</topic><topic>Particle filtering (PF)</topic><topic>Prediction algorithms</topic><topic>Predictive maintenance</topic><topic>Predictive models</topic><topic>remaining useful life (RUL) prediction</topic><topic>Resampling</topic><topic>Trajectory</topic><topic>Turbofan engines</topic><topic>unit maximum likelihood estimation (UMLE)</topic><topic>unit-to-unit variability (UtUV)</topic><topic>Useful life</topic><topic>Wiener process model (WPM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Naipeng</creatorcontrib><creatorcontrib>Lei, Yaguo</creatorcontrib><creatorcontrib>Yan, Tao</creatorcontrib><creatorcontrib>Li, Ningbo</creatorcontrib><creatorcontrib>Han, Tianyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Naipeng</au><au>Lei, Yaguo</au><au>Yan, Tao</au><au>Li, Ningbo</au><au>Han, Tianyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wiener-Process-Model-Based Method for Remaining Useful Life Prediction Considering Unit-to-Unit Variability</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>66</volume><issue>3</issue><spage>2092</spage><epage>2101</epage><pages>2092-2101</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Remaining useful life (RUL) prediction has attracted more and more attention in recent years because of its significance in predictive maintenance. The degradation processes of systems from the same population are generally different from one another due to their various operational conditions and health states. This behavior is defined as unit-to-unit variability (UtUV), which brings difficulty to RUL prediction. To handle this problem, this paper develops a Wiener-process-model (WPM)-based method for RUL prediction with the consideration of the UtUV. In this method, an age- and state-dependent WPM is specially designed to describe the various degradation processes of different units. A unit maximum likelihood estimation (UMLE) algorithm is proposed to estimate the UtUV parameter according to the measurements of training units, without any restriction to the distribution pattern of the parameter. The UtUV parameter is further updated via particle filtering (PF) according to the measurements of the testing unit. In the particle updating process, a fuzzy resampling algorithm is developed to handle the sample impoverishment problem of PF. With the updated parameter, the RUL is predicted through a degradation process simulation algorithm. The effectiveness of the proposed method is verified through a simulation study and a turbofan engine degradation dataset.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2018.2838078</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5167-1459</orcidid><orcidid>https://orcid.org/0000-0002-6837-4901</orcidid><orcidid>https://orcid.org/0000-0002-3328-2118</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2019-03, Vol.66 (3), p.2092-2101
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2127985880
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Computer simulation
Degradation
Filtration
Life prediction
Mathematical models
Maximum likelihood estimation
Modeling
Parameter estimation
Particle filtering (PF)
Prediction algorithms
Predictive maintenance
Predictive models
remaining useful life (RUL) prediction
Resampling
Trajectory
Turbofan engines
unit maximum likelihood estimation (UMLE)
unit-to-unit variability (UtUV)
Useful life
Wiener process model (WPM)
title A Wiener-Process-Model-Based Method for Remaining Useful Life Prediction Considering Unit-to-Unit Variability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wiener-Process-Model-Based%20Method%20for%20Remaining%20Useful%20Life%20Prediction%20Considering%20Unit-to-Unit%20Variability&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Li,%20Naipeng&rft.date=2019-03-01&rft.volume=66&rft.issue=3&rft.spage=2092&rft.epage=2101&rft.pages=2092-2101&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2018.2838078&rft_dat=%3Cproquest_cross%3E2127985880%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-52828f25471c81538f1fac999eb28090d7cddce78917cd2138a1b1f4937d8f2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2127985880&rft_id=info:pmid/&rft_ieee_id=8365144&rfr_iscdi=true