Loading…
A Wiener-Process-Model-Based Method for Remaining Useful Life Prediction Considering Unit-to-Unit Variability
Remaining useful life (RUL) prediction has attracted more and more attention in recent years because of its significance in predictive maintenance. The degradation processes of systems from the same population are generally different from one another due to their various operational conditions and h...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2019-03, Vol.66 (3), p.2092-2101 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-52828f25471c81538f1fac999eb28090d7cddce78917cd2138a1b1f4937d8f2a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-52828f25471c81538f1fac999eb28090d7cddce78917cd2138a1b1f4937d8f2a3 |
container_end_page | 2101 |
container_issue | 3 |
container_start_page | 2092 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 66 |
creator | Li, Naipeng Lei, Yaguo Yan, Tao Li, Ningbo Han, Tianyu |
description | Remaining useful life (RUL) prediction has attracted more and more attention in recent years because of its significance in predictive maintenance. The degradation processes of systems from the same population are generally different from one another due to their various operational conditions and health states. This behavior is defined as unit-to-unit variability (UtUV), which brings difficulty to RUL prediction. To handle this problem, this paper develops a Wiener-process-model (WPM)-based method for RUL prediction with the consideration of the UtUV. In this method, an age- and state-dependent WPM is specially designed to describe the various degradation processes of different units. A unit maximum likelihood estimation (UMLE) algorithm is proposed to estimate the UtUV parameter according to the measurements of training units, without any restriction to the distribution pattern of the parameter. The UtUV parameter is further updated via particle filtering (PF) according to the measurements of the testing unit. In the particle updating process, a fuzzy resampling algorithm is developed to handle the sample impoverishment problem of PF. With the updated parameter, the RUL is predicted through a degradation process simulation algorithm. The effectiveness of the proposed method is verified through a simulation study and a turbofan engine degradation dataset. |
doi_str_mv | 10.1109/TIE.2018.2838078 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127985880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8365144</ieee_id><sourcerecordid>2127985880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-52828f25471c81538f1fac999eb28090d7cddce78917cd2138a1b1f4937d8f2a3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWB97wU3AdWpuMuncLLX4gooiVpdDOrnRSDvRZLrw3zu14urcxXfOhY-xE5BjAGnPn--uxkoCjhVqlDXusBEYUwtrK9xlI6lqFFJWk312UMqHlFAZMCO2uuCvkTrK4jGnlkoR98nTUly6Qp7fU_-ePA8p8ydaudjF7o3PC4X1ks9iIP6Yyce2j6nj09SV6Cn_Il3sRZ_EJvmLy9Et4jL230dsL7hloeO_PGTz66vn6a2YPdzcTS9motUae2EUKgzKVDW0CEZjgOBaay0tFEorfd1631KNFoZLgUYHCwiV1bUfek4fsrPt7mdOX2sqffOR1rkbXjYKVG3RIMqBkluqzamUTKH5zHHl8ncDstlIbQapzUZq8yd1qJxuK5GI_nHUEwNVpX8ADItywg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127985880</pqid></control><display><type>article</type><title>A Wiener-Process-Model-Based Method for Remaining Useful Life Prediction Considering Unit-to-Unit Variability</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Naipeng ; Lei, Yaguo ; Yan, Tao ; Li, Ningbo ; Han, Tianyu</creator><creatorcontrib>Li, Naipeng ; Lei, Yaguo ; Yan, Tao ; Li, Ningbo ; Han, Tianyu</creatorcontrib><description>Remaining useful life (RUL) prediction has attracted more and more attention in recent years because of its significance in predictive maintenance. The degradation processes of systems from the same population are generally different from one another due to their various operational conditions and health states. This behavior is defined as unit-to-unit variability (UtUV), which brings difficulty to RUL prediction. To handle this problem, this paper develops a Wiener-process-model (WPM)-based method for RUL prediction with the consideration of the UtUV. In this method, an age- and state-dependent WPM is specially designed to describe the various degradation processes of different units. A unit maximum likelihood estimation (UMLE) algorithm is proposed to estimate the UtUV parameter according to the measurements of training units, without any restriction to the distribution pattern of the parameter. The UtUV parameter is further updated via particle filtering (PF) according to the measurements of the testing unit. In the particle updating process, a fuzzy resampling algorithm is developed to handle the sample impoverishment problem of PF. With the updated parameter, the RUL is predicted through a degradation process simulation algorithm. The effectiveness of the proposed method is verified through a simulation study and a turbofan engine degradation dataset.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2018.2838078</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computer simulation ; Degradation ; Filtration ; Life prediction ; Mathematical models ; Maximum likelihood estimation ; Modeling ; Parameter estimation ; Particle filtering (PF) ; Prediction algorithms ; Predictive maintenance ; Predictive models ; remaining useful life (RUL) prediction ; Resampling ; Trajectory ; Turbofan engines ; unit maximum likelihood estimation (UMLE) ; unit-to-unit variability (UtUV) ; Useful life ; Wiener process model (WPM)</subject><ispartof>IEEE transactions on industrial electronics (1982), 2019-03, Vol.66 (3), p.2092-2101</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-52828f25471c81538f1fac999eb28090d7cddce78917cd2138a1b1f4937d8f2a3</citedby><cites>FETCH-LOGICAL-c338t-52828f25471c81538f1fac999eb28090d7cddce78917cd2138a1b1f4937d8f2a3</cites><orcidid>0000-0002-5167-1459 ; 0000-0002-6837-4901 ; 0000-0002-3328-2118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8365144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, Naipeng</creatorcontrib><creatorcontrib>Lei, Yaguo</creatorcontrib><creatorcontrib>Yan, Tao</creatorcontrib><creatorcontrib>Li, Ningbo</creatorcontrib><creatorcontrib>Han, Tianyu</creatorcontrib><title>A Wiener-Process-Model-Based Method for Remaining Useful Life Prediction Considering Unit-to-Unit Variability</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Remaining useful life (RUL) prediction has attracted more and more attention in recent years because of its significance in predictive maintenance. The degradation processes of systems from the same population are generally different from one another due to their various operational conditions and health states. This behavior is defined as unit-to-unit variability (UtUV), which brings difficulty to RUL prediction. To handle this problem, this paper develops a Wiener-process-model (WPM)-based method for RUL prediction with the consideration of the UtUV. In this method, an age- and state-dependent WPM is specially designed to describe the various degradation processes of different units. A unit maximum likelihood estimation (UMLE) algorithm is proposed to estimate the UtUV parameter according to the measurements of training units, without any restriction to the distribution pattern of the parameter. The UtUV parameter is further updated via particle filtering (PF) according to the measurements of the testing unit. In the particle updating process, a fuzzy resampling algorithm is developed to handle the sample impoverishment problem of PF. With the updated parameter, the RUL is predicted through a degradation process simulation algorithm. The effectiveness of the proposed method is verified through a simulation study and a turbofan engine degradation dataset.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Degradation</subject><subject>Filtration</subject><subject>Life prediction</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Modeling</subject><subject>Parameter estimation</subject><subject>Particle filtering (PF)</subject><subject>Prediction algorithms</subject><subject>Predictive maintenance</subject><subject>Predictive models</subject><subject>remaining useful life (RUL) prediction</subject><subject>Resampling</subject><subject>Trajectory</subject><subject>Turbofan engines</subject><subject>unit maximum likelihood estimation (UMLE)</subject><subject>unit-to-unit variability (UtUV)</subject><subject>Useful life</subject><subject>Wiener process model (WPM)</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWB97wU3AdWpuMuncLLX4gooiVpdDOrnRSDvRZLrw3zu14urcxXfOhY-xE5BjAGnPn--uxkoCjhVqlDXusBEYUwtrK9xlI6lqFFJWk312UMqHlFAZMCO2uuCvkTrK4jGnlkoR98nTUly6Qp7fU_-ePA8p8ydaudjF7o3PC4X1ks9iIP6Yyce2j6nj09SV6Cn_Il3sRZ_EJvmLy9Et4jL230dsL7hloeO_PGTz66vn6a2YPdzcTS9motUae2EUKgzKVDW0CEZjgOBaay0tFEorfd1631KNFoZLgUYHCwiV1bUfek4fsrPt7mdOX2sqffOR1rkbXjYKVG3RIMqBkluqzamUTKH5zHHl8ncDstlIbQapzUZq8yd1qJxuK5GI_nHUEwNVpX8ADItywg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Li, Naipeng</creator><creator>Lei, Yaguo</creator><creator>Yan, Tao</creator><creator>Li, Ningbo</creator><creator>Han, Tianyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5167-1459</orcidid><orcidid>https://orcid.org/0000-0002-6837-4901</orcidid><orcidid>https://orcid.org/0000-0002-3328-2118</orcidid></search><sort><creationdate>20190301</creationdate><title>A Wiener-Process-Model-Based Method for Remaining Useful Life Prediction Considering Unit-to-Unit Variability</title><author>Li, Naipeng ; Lei, Yaguo ; Yan, Tao ; Li, Ningbo ; Han, Tianyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-52828f25471c81538f1fac999eb28090d7cddce78917cd2138a1b1f4937d8f2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Degradation</topic><topic>Filtration</topic><topic>Life prediction</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Modeling</topic><topic>Parameter estimation</topic><topic>Particle filtering (PF)</topic><topic>Prediction algorithms</topic><topic>Predictive maintenance</topic><topic>Predictive models</topic><topic>remaining useful life (RUL) prediction</topic><topic>Resampling</topic><topic>Trajectory</topic><topic>Turbofan engines</topic><topic>unit maximum likelihood estimation (UMLE)</topic><topic>unit-to-unit variability (UtUV)</topic><topic>Useful life</topic><topic>Wiener process model (WPM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Naipeng</creatorcontrib><creatorcontrib>Lei, Yaguo</creatorcontrib><creatorcontrib>Yan, Tao</creatorcontrib><creatorcontrib>Li, Ningbo</creatorcontrib><creatorcontrib>Han, Tianyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Naipeng</au><au>Lei, Yaguo</au><au>Yan, Tao</au><au>Li, Ningbo</au><au>Han, Tianyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wiener-Process-Model-Based Method for Remaining Useful Life Prediction Considering Unit-to-Unit Variability</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>66</volume><issue>3</issue><spage>2092</spage><epage>2101</epage><pages>2092-2101</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Remaining useful life (RUL) prediction has attracted more and more attention in recent years because of its significance in predictive maintenance. The degradation processes of systems from the same population are generally different from one another due to their various operational conditions and health states. This behavior is defined as unit-to-unit variability (UtUV), which brings difficulty to RUL prediction. To handle this problem, this paper develops a Wiener-process-model (WPM)-based method for RUL prediction with the consideration of the UtUV. In this method, an age- and state-dependent WPM is specially designed to describe the various degradation processes of different units. A unit maximum likelihood estimation (UMLE) algorithm is proposed to estimate the UtUV parameter according to the measurements of training units, without any restriction to the distribution pattern of the parameter. The UtUV parameter is further updated via particle filtering (PF) according to the measurements of the testing unit. In the particle updating process, a fuzzy resampling algorithm is developed to handle the sample impoverishment problem of PF. With the updated parameter, the RUL is predicted through a degradation process simulation algorithm. The effectiveness of the proposed method is verified through a simulation study and a turbofan engine degradation dataset.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2018.2838078</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5167-1459</orcidid><orcidid>https://orcid.org/0000-0002-6837-4901</orcidid><orcidid>https://orcid.org/0000-0002-3328-2118</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2019-03, Vol.66 (3), p.2092-2101 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2127985880 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Computer simulation Degradation Filtration Life prediction Mathematical models Maximum likelihood estimation Modeling Parameter estimation Particle filtering (PF) Prediction algorithms Predictive maintenance Predictive models remaining useful life (RUL) prediction Resampling Trajectory Turbofan engines unit maximum likelihood estimation (UMLE) unit-to-unit variability (UtUV) Useful life Wiener process model (WPM) |
title | A Wiener-Process-Model-Based Method for Remaining Useful Life Prediction Considering Unit-to-Unit Variability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wiener-Process-Model-Based%20Method%20for%20Remaining%20Useful%20Life%20Prediction%20Considering%20Unit-to-Unit%20Variability&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Li,%20Naipeng&rft.date=2019-03-01&rft.volume=66&rft.issue=3&rft.spage=2092&rft.epage=2101&rft.pages=2092-2101&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2018.2838078&rft_dat=%3Cproquest_cross%3E2127985880%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-52828f25471c81538f1fac999eb28090d7cddce78917cd2138a1b1f4937d8f2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2127985880&rft_id=info:pmid/&rft_ieee_id=8365144&rfr_iscdi=true |