Loading…
Research on Speed Optimization Strategy of Hybrid Electric Vehicle Queue Based on Particle Swarm Optimization
Traffic lights intersections are common in cities and have an impact on the energy consumption of vehicles, so it is significant to optimize the velocities of vehicles in urban road conditions. The novel speed optimization strategy for hybrid electric vehicle (HEV) queue that helps reduce fuel consu...
Saved in:
Published in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-14 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Traffic lights intersections are common in cities and have an impact on the energy consumption of vehicles, so it is significant to optimize the velocities of vehicles in urban road conditions. The novel speed optimization strategy for hybrid electric vehicle (HEV) queue that helps reduce fuel consumption and improve traffic efficiency is presented in this paper, where real-world traffic signal information is used to construct the research scenario. The initial values of the target velocities are obtained based on the signal phase and timing (SPAT). Then the particle swarm optimization (PSO) algorithm is used to solve the nonlinear constrained problem and obtain the optimal target velocities based on vehicle to vehicle communication (V2V) and vehicle to infrastructure communication (V2I). The lower controller, which applies rule based control strategy, is designed to split the power of the engine and two electric motors in a power split HEV, which is quite promising because of its advantages in fuel economy. Simulation results demonstrate the superior performance of the proposed strategy in reducing fuel consumption of the HEV queue and improving traffic smoothness. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2018/6483145 |