Loading…

USING INSTRUMENTAL VARIABLES FOR INFERENCE ABOUT POLICY RELEVANT TREATMENT PARAMETERS

We propose a method for using instrumental variables (IV) to draw inference about causal effects for individuals other than those affected by the instrument at hand. Policy relevance and external validity turn on the ability to do this reliably. Our method exploits the insight that both the IV estim...

Full description

Saved in:
Bibliographic Details
Published in:Econometrica 2018-09, Vol.86 (5), p.1589-1619
Main Authors: Mogstad, Magne, Santos, Andres, Torgovitsky, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4943-7ec0d77ba6995e072a08b5506b2d6978204db59095ddc29921d2d682614998593
cites
container_end_page 1619
container_issue 5
container_start_page 1589
container_title Econometrica
container_volume 86
creator Mogstad, Magne
Santos, Andres
Torgovitsky, Alexander
description We propose a method for using instrumental variables (IV) to draw inference about causal effects for individuals other than those affected by the instrument at hand. Policy relevance and external validity turn on the ability to do this reliably. Our method exploits the insight that both the IV estimand and many treatment parameters can be expressed as weighted averages of the same underlying marginal treatment effects. Since the weights are identified, knowledge of the IV estimand generally places some restrictions on the unknown marginal treatment effects, and hence on the values of the treatment parameters of interest. We show how to extract information about the treatment parameter of interest from the IV estimand and, more generally, from a class of IV-like estimands that includes the two stage least squares and ordinary least squares estimands, among others. Our method has several applications. First, it can be used to construct nonparametric bounds on the average causal effect of a hypothetical policy change. Second, our method allows the researcher to flexibly incorporate shape restrictions and parametric assumptions, thereby enabling extrapolation of the average effects for compilers to the average effects for different or larger populations. Third, our method can be used to test model specification and hypotheses about behavior, such as no selection bias and/or no selection on gain.
doi_str_mv 10.3982/ecta15463
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2130201226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44955253</jstor_id><sourcerecordid>44955253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4943-7ec0d77ba6995e072a08b5506b2d6978204db59095ddc29921d2d682614998593</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFYP_gBhwZOH6Oxmd5M9bsO2BmJSNpuCp5CvQku1NWmR_ntTI4IHYWAO8zwzzIvQLYFHV_r0qan2BeFMuGdoRJjwHaCCnqMRAKGOFD69RFddtwYA3tcIZVkaxjMcxqk12YuOrYrwQplQTSKd4mli-tFUGx0HGqtJklk8T6IweMVGR3qhYout0cqeTDxXRr1oq016jS6WxaZrbn76GGVTbYNnJ0pmYaAip2KSuY7XVFB7XlkIKXkDHi3ALzkHUdJaSM-nwOqSS5C8risqJSV1P_CpIExKn0t3jO6Hvbt2-3Foun2-3h7a9_5kTokLtH-aip56GKiq3XZd2yzzXbt6K9pjTiA_pZbrwKrv1HoWBvZztWmO_4N_lLtBWXf7bfurMCY5p9x1vwDscW3m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130201226</pqid></control><display><type>article</type><title>USING INSTRUMENTAL VARIABLES FOR INFERENCE ABOUT POLICY RELEVANT TREATMENT PARAMETERS</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><source>EBSCOhost Econlit with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Mogstad, Magne ; Santos, Andres ; Torgovitsky, Alexander</creator><creatorcontrib>Mogstad, Magne ; Santos, Andres ; Torgovitsky, Alexander</creatorcontrib><description>We propose a method for using instrumental variables (IV) to draw inference about causal effects for individuals other than those affected by the instrument at hand. Policy relevance and external validity turn on the ability to do this reliably. Our method exploits the insight that both the IV estimand and many treatment parameters can be expressed as weighted averages of the same underlying marginal treatment effects. Since the weights are identified, knowledge of the IV estimand generally places some restrictions on the unknown marginal treatment effects, and hence on the values of the treatment parameters of interest. We show how to extract information about the treatment parameter of interest from the IV estimand and, more generally, from a class of IV-like estimands that includes the two stage least squares and ordinary least squares estimands, among others. Our method has several applications. First, it can be used to construct nonparametric bounds on the average causal effect of a hypothetical policy change. Second, our method allows the researcher to flexibly incorporate shape restrictions and parametric assumptions, thereby enabling extrapolation of the average effects for compilers to the average effects for different or larger populations. Third, our method can be used to test model specification and hypotheses about behavior, such as no selection bias and/or no selection on gain.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.3982/ecta15463</identifier><language>eng</language><publisher>Evanston: Econometric Society</publisher><subject>Averages ; Causality ; Econometrics ; Economic models ; Extrapolation ; Inference ; Insight ; Instrumental variables ; LATE ; local average treatment effect ; marginal treatment effect ; MTE ; partial identification ; Policy making ; Selection bias ; Specification ; treatment effects ; Variables</subject><ispartof>Econometrica, 2018-09, Vol.86 (5), p.1589-1619</ispartof><rights>Copyright ©2018 The Econometric Society</rights><rights>2018 The Econometric Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4943-7ec0d77ba6995e072a08b5506b2d6978204db59095ddc29921d2d682614998593</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44955253$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44955253$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,33221,58236,58469</link.rule.ids></links><search><creatorcontrib>Mogstad, Magne</creatorcontrib><creatorcontrib>Santos, Andres</creatorcontrib><creatorcontrib>Torgovitsky, Alexander</creatorcontrib><title>USING INSTRUMENTAL VARIABLES FOR INFERENCE ABOUT POLICY RELEVANT TREATMENT PARAMETERS</title><title>Econometrica</title><description>We propose a method for using instrumental variables (IV) to draw inference about causal effects for individuals other than those affected by the instrument at hand. Policy relevance and external validity turn on the ability to do this reliably. Our method exploits the insight that both the IV estimand and many treatment parameters can be expressed as weighted averages of the same underlying marginal treatment effects. Since the weights are identified, knowledge of the IV estimand generally places some restrictions on the unknown marginal treatment effects, and hence on the values of the treatment parameters of interest. We show how to extract information about the treatment parameter of interest from the IV estimand and, more generally, from a class of IV-like estimands that includes the two stage least squares and ordinary least squares estimands, among others. Our method has several applications. First, it can be used to construct nonparametric bounds on the average causal effect of a hypothetical policy change. Second, our method allows the researcher to flexibly incorporate shape restrictions and parametric assumptions, thereby enabling extrapolation of the average effects for compilers to the average effects for different or larger populations. Third, our method can be used to test model specification and hypotheses about behavior, such as no selection bias and/or no selection on gain.</description><subject>Averages</subject><subject>Causality</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Extrapolation</subject><subject>Inference</subject><subject>Insight</subject><subject>Instrumental variables</subject><subject>LATE</subject><subject>local average treatment effect</subject><subject>marginal treatment effect</subject><subject>MTE</subject><subject>partial identification</subject><subject>Policy making</subject><subject>Selection bias</subject><subject>Specification</subject><subject>treatment effects</subject><subject>Variables</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp1kE1Lw0AQhhdRsFYP_gBhwZOH6Oxmd5M9bsO2BmJSNpuCp5CvQku1NWmR_ntTI4IHYWAO8zwzzIvQLYFHV_r0qan2BeFMuGdoRJjwHaCCnqMRAKGOFD69RFddtwYA3tcIZVkaxjMcxqk12YuOrYrwQplQTSKd4mli-tFUGx0HGqtJklk8T6IweMVGR3qhYout0cqeTDxXRr1oq016jS6WxaZrbn76GGVTbYNnJ0pmYaAip2KSuY7XVFB7XlkIKXkDHi3ALzkHUdJaSM-nwOqSS5C8risqJSV1P_CpIExKn0t3jO6Hvbt2-3Foun2-3h7a9_5kTokLtH-aip56GKiq3XZd2yzzXbt6K9pjTiA_pZbrwKrv1HoWBvZztWmO_4N_lLtBWXf7bfurMCY5p9x1vwDscW3m</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Mogstad, Magne</creator><creator>Santos, Andres</creator><creator>Torgovitsky, Alexander</creator><general>Econometric Society</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201809</creationdate><title>USING INSTRUMENTAL VARIABLES FOR INFERENCE ABOUT POLICY RELEVANT TREATMENT PARAMETERS</title><author>Mogstad, Magne ; Santos, Andres ; Torgovitsky, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4943-7ec0d77ba6995e072a08b5506b2d6978204db59095ddc29921d2d682614998593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Averages</topic><topic>Causality</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Extrapolation</topic><topic>Inference</topic><topic>Insight</topic><topic>Instrumental variables</topic><topic>LATE</topic><topic>local average treatment effect</topic><topic>marginal treatment effect</topic><topic>MTE</topic><topic>partial identification</topic><topic>Policy making</topic><topic>Selection bias</topic><topic>Specification</topic><topic>treatment effects</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mogstad, Magne</creatorcontrib><creatorcontrib>Santos, Andres</creatorcontrib><creatorcontrib>Torgovitsky, Alexander</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mogstad, Magne</au><au>Santos, Andres</au><au>Torgovitsky, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>USING INSTRUMENTAL VARIABLES FOR INFERENCE ABOUT POLICY RELEVANT TREATMENT PARAMETERS</atitle><jtitle>Econometrica</jtitle><date>2018-09</date><risdate>2018</risdate><volume>86</volume><issue>5</issue><spage>1589</spage><epage>1619</epage><pages>1589-1619</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><abstract>We propose a method for using instrumental variables (IV) to draw inference about causal effects for individuals other than those affected by the instrument at hand. Policy relevance and external validity turn on the ability to do this reliably. Our method exploits the insight that both the IV estimand and many treatment parameters can be expressed as weighted averages of the same underlying marginal treatment effects. Since the weights are identified, knowledge of the IV estimand generally places some restrictions on the unknown marginal treatment effects, and hence on the values of the treatment parameters of interest. We show how to extract information about the treatment parameter of interest from the IV estimand and, more generally, from a class of IV-like estimands that includes the two stage least squares and ordinary least squares estimands, among others. Our method has several applications. First, it can be used to construct nonparametric bounds on the average causal effect of a hypothetical policy change. Second, our method allows the researcher to flexibly incorporate shape restrictions and parametric assumptions, thereby enabling extrapolation of the average effects for compilers to the average effects for different or larger populations. Third, our method can be used to test model specification and hypotheses about behavior, such as no selection bias and/or no selection on gain.</abstract><cop>Evanston</cop><pub>Econometric Society</pub><doi>10.3982/ecta15463</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-9682
ispartof Econometrica, 2018-09, Vol.86 (5), p.1589-1619
issn 0012-9682
1468-0262
language eng
recordid cdi_proquest_journals_2130201226
source International Bibliography of the Social Sciences (IBSS); Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list); EBSCOhost Econlit with Full Text; JSTOR Archival Journals and Primary Sources Collection
subjects Averages
Causality
Econometrics
Economic models
Extrapolation
Inference
Insight
Instrumental variables
LATE
local average treatment effect
marginal treatment effect
MTE
partial identification
Policy making
Selection bias
Specification
treatment effects
Variables
title USING INSTRUMENTAL VARIABLES FOR INFERENCE ABOUT POLICY RELEVANT TREATMENT PARAMETERS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=USING%20INSTRUMENTAL%20VARIABLES%20FOR%20INFERENCE%20ABOUT%20POLICY%20RELEVANT%20TREATMENT%20PARAMETERS&rft.jtitle=Econometrica&rft.au=Mogstad,%20Magne&rft.date=2018-09&rft.volume=86&rft.issue=5&rft.spage=1589&rft.epage=1619&rft.pages=1589-1619&rft.issn=0012-9682&rft.eissn=1468-0262&rft_id=info:doi/10.3982/ecta15463&rft_dat=%3Cjstor_proqu%3E44955253%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4943-7ec0d77ba6995e072a08b5506b2d6978204db59095ddc29921d2d682614998593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2130201226&rft_id=info:pmid/&rft_jstor_id=44955253&rfr_iscdi=true