Loading…
Note: Rule-Based Forecasting vs. Damped-Trend Exponential Smoothing
This paper evaluates the ex ante performance of rule-based time series forecasting systems proposed in earlier research. The author shows that comparable performance can be obtained with a simpler alternative, a damped-trend version of exponential smoothing fitted to minimize the Mean-Absolute-Devia...
Saved in:
Published in: | Management science 1999-08, Vol.45 (8), p.1169-1176 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c516t-24e41c9d28d88ac5fbfe43a8d6349be020bc2198c986aa2974a6152639fbc733 |
---|---|
cites | cdi_FETCH-LOGICAL-c516t-24e41c9d28d88ac5fbfe43a8d6349be020bc2198c986aa2974a6152639fbc733 |
container_end_page | 1176 |
container_issue | 8 |
container_start_page | 1169 |
container_title | Management science |
container_volume | 45 |
creator | Gardner, Everette S |
description | This paper evaluates the ex ante performance of rule-based time series forecasting systems proposed in earlier research. The author shows that comparable performance can be obtained with a simpler alternative, a damped-trend version of exponential smoothing fitted to minimize the Mean-Absolute-Deviation (MAD) criterion. The results suggest that the performance of rule-based systems would be improved through this alternative and that time series forecasters should consider MAD fits in model development. |
doi_str_mv | 10.1287/mnsc.45.8.1169 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_213168432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>45157638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-24e41c9d28d88ac5fbfe43a8d6349be020bc2198c986aa2974a6152639fbc733</originalsourceid><addsrcrecordid>eNqFkN1rFDEUxUNRcF199XmoIH2ZMR-TTNI3u7YqLAq67yGbudNNmUnGZLba_96M00oRxIfDhfA7594chF4RXBEqm7eDT7aqeSUrQoQ6QSvCqSg5x-QJWmFMeUkUVs_Q85RuMMaNbMQKbT6HCc6Lr8ceyguToC2uQgRr0uT8dXGbquK9GUZoy10E3xaXP8fgwU_O9MW3IYTpkLEX6Gln-gQv7-ca7a4ud5uP5fbLh0-bd9vSciKmktZQE6taKlspjeXdvoOaGdkKVqs9YIr3lhIlrZLCGKqa2oj5C0x1e9swtkZvltgxhu9HSJMeXLLQ98ZDOCbNZCN5w3EGT_8Cb8Ix-nyapoQRIWtGM_T6XxCRTClFVZ5rVC2UjSGlCJ0eoxtMvNME67l1Pbeua66lnlvPhu1iiDCC_UM7P4T4G73VzGScmbsskvfk4bJk1jg_5ZQc1Qh9mIYcVy5xznc5IP1__dnCH9z14YeLoB-Mg8mke4T-ApMUqpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213168432</pqid></control><display><type>article</type><title>Note: Rule-Based Forecasting vs. Damped-Trend Exponential Smoothing</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>Informs PubsOnline</source><source>ABI/INFORM Archive</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><creator>Gardner, Everette S</creator><creatorcontrib>Gardner, Everette S</creatorcontrib><description>This paper evaluates the ex ante performance of rule-based time series forecasting systems proposed in earlier research. The author shows that comparable performance can be obtained with a simpler alternative, a damped-trend version of exponential smoothing fitted to minimize the Mean-Absolute-Deviation (MAD) criterion. The results suggest that the performance of rule-based systems would be improved through this alternative and that time series forecasters should consider MAD fits in model development.</description><identifier>ISSN: 0025-1909</identifier><identifier>EISSN: 1526-5501</identifier><identifier>DOI: 10.1287/mnsc.45.8.1169</identifier><identifier>CODEN: MNSCDI</identifier><language>eng</language><publisher>Hanover, MD., etc: INFORMS</publisher><subject>Average ; combining forecasts ; Comparative analysis ; Economic forecasts ; Expert systems ; exponential smoothing ; extrapolation ; Forecasting ; Forecasts ; judgment ; Mathematical models ; Mathematics ; Operations research ; rule-based forecasting ; Statistical analysis ; Studies ; Time series</subject><ispartof>Management science, 1999-08, Vol.45 (8), p.1169-1176</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences Aug 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-24e41c9d28d88ac5fbfe43a8d6349be020bc2198c986aa2974a6152639fbc733</citedby><cites>FETCH-LOGICAL-c516t-24e41c9d28d88ac5fbfe43a8d6349be020bc2198c986aa2974a6152639fbc733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/213168432/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/213168432?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3692,11688,11906,12847,27924,27925,33223,33224,36050,36051,36060,36061,44361,44363,62616,74893,74895</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/inmormnsc/v_3a45_3ay_3a1999_3ai_3a8_3ap_3a1169-1176.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Gardner, Everette S</creatorcontrib><title>Note: Rule-Based Forecasting vs. Damped-Trend Exponential Smoothing</title><title>Management science</title><description>This paper evaluates the ex ante performance of rule-based time series forecasting systems proposed in earlier research. The author shows that comparable performance can be obtained with a simpler alternative, a damped-trend version of exponential smoothing fitted to minimize the Mean-Absolute-Deviation (MAD) criterion. The results suggest that the performance of rule-based systems would be improved through this alternative and that time series forecasters should consider MAD fits in model development.</description><subject>Average</subject><subject>combining forecasts</subject><subject>Comparative analysis</subject><subject>Economic forecasts</subject><subject>Expert systems</subject><subject>exponential smoothing</subject><subject>extrapolation</subject><subject>Forecasting</subject><subject>Forecasts</subject><subject>judgment</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Operations research</subject><subject>rule-based forecasting</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Time series</subject><issn>0025-1909</issn><issn>1526-5501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNqFkN1rFDEUxUNRcF199XmoIH2ZMR-TTNI3u7YqLAq67yGbudNNmUnGZLba_96M00oRxIfDhfA7594chF4RXBEqm7eDT7aqeSUrQoQ6QSvCqSg5x-QJWmFMeUkUVs_Q85RuMMaNbMQKbT6HCc6Lr8ceyguToC2uQgRr0uT8dXGbquK9GUZoy10E3xaXP8fgwU_O9MW3IYTpkLEX6Gln-gQv7-ca7a4ud5uP5fbLh0-bd9vSciKmktZQE6taKlspjeXdvoOaGdkKVqs9YIr3lhIlrZLCGKqa2oj5C0x1e9swtkZvltgxhu9HSJMeXLLQ98ZDOCbNZCN5w3EGT_8Cb8Ix-nyapoQRIWtGM_T6XxCRTClFVZ5rVC2UjSGlCJ0eoxtMvNME67l1Pbeua66lnlvPhu1iiDCC_UM7P4T4G73VzGScmbsskvfk4bJk1jg_5ZQc1Qh9mIYcVy5xznc5IP1__dnCH9z14YeLoB-Mg8mke4T-ApMUqpI</recordid><startdate>19990801</startdate><enddate>19990801</enddate><creator>Gardner, Everette S</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>SAAPM</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88G</scope><scope>8A3</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0T</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>19990801</creationdate><title>Note: Rule-Based Forecasting vs. Damped-Trend Exponential Smoothing</title><author>Gardner, Everette S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-24e41c9d28d88ac5fbfe43a8d6349be020bc2198c986aa2974a6152639fbc733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Average</topic><topic>combining forecasts</topic><topic>Comparative analysis</topic><topic>Economic forecasts</topic><topic>Expert systems</topic><topic>exponential smoothing</topic><topic>extrapolation</topic><topic>Forecasting</topic><topic>Forecasts</topic><topic>judgment</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Operations research</topic><topic>rule-based forecasting</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gardner, Everette S</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Periodicals Index Online Segment 42</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Psychology Database (Alumni)</collection><collection>Entrepreneurship Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>Psychology Database</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gardner, Everette S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Note: Rule-Based Forecasting vs. Damped-Trend Exponential Smoothing</atitle><jtitle>Management science</jtitle><date>1999-08-01</date><risdate>1999</risdate><volume>45</volume><issue>8</issue><spage>1169</spage><epage>1176</epage><pages>1169-1176</pages><issn>0025-1909</issn><eissn>1526-5501</eissn><coden>MNSCDI</coden><abstract>This paper evaluates the ex ante performance of rule-based time series forecasting systems proposed in earlier research. The author shows that comparable performance can be obtained with a simpler alternative, a damped-trend version of exponential smoothing fitted to minimize the Mean-Absolute-Deviation (MAD) criterion. The results suggest that the performance of rule-based systems would be improved through this alternative and that time series forecasters should consider MAD fits in model development.</abstract><cop>Hanover, MD., etc</cop><pub>INFORMS</pub><doi>10.1287/mnsc.45.8.1169</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-1909 |
ispartof | Management science, 1999-08, Vol.45 (8), p.1169-1176 |
issn | 0025-1909 1526-5501 |
language | eng |
recordid | cdi_proquest_journals_213168432 |
source | International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; Informs PubsOnline; ABI/INFORM Archive; JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global |
subjects | Average combining forecasts Comparative analysis Economic forecasts Expert systems exponential smoothing extrapolation Forecasting Forecasts judgment Mathematical models Mathematics Operations research rule-based forecasting Statistical analysis Studies Time series |
title | Note: Rule-Based Forecasting vs. Damped-Trend Exponential Smoothing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A14%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Note:%20Rule-Based%20Forecasting%20vs.%20Damped-Trend%20Exponential%20Smoothing&rft.jtitle=Management%20science&rft.au=Gardner,%20Everette%20S&rft.date=1999-08-01&rft.volume=45&rft.issue=8&rft.spage=1169&rft.epage=1176&rft.pages=1169-1176&rft.issn=0025-1909&rft.eissn=1526-5501&rft.coden=MNSCDI&rft_id=info:doi/10.1287/mnsc.45.8.1169&rft_dat=%3Cproquest_cross%3E45157638%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-24e41c9d28d88ac5fbfe43a8d6349be020bc2198c986aa2974a6152639fbc733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213168432&rft_id=info:pmid/&rfr_iscdi=true |