Loading…
A Semieager Classifier for Open Relation Extraction
A variety of open relation extraction systems have been developed in the last decade. And deep learning, especially with attention model, has gained much success in the task of relation classification. Nevertheless, there is, yet, no research reported on classifying open relation tuples to our knowl...
Saved in:
Published in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-9 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A variety of open relation extraction systems have been developed in the last decade. And deep learning, especially with attention model, has gained much success in the task of relation classification. Nevertheless, there is, yet, no research reported on classifying open relation tuples to our knowledge. In this paper, we propose a novel semieager learning algorithm (SemiE) to tackle the problem of open relation classification. Different from the eager learning approaches (e.g., ANNs) and the lazy learning approaches (e.g., kNN), the SemiE offers the benefits of both categories of learning scheme, with its significantly lower computational cost (O(n)). This algorithm can also be employed in other classification tasks. Additionally, this paper presents an adapted attention model to transform relation phrases into vectors by using word embedding. The experimental results on two benchmark datasets show that our method outperforms the state-of-the-art methods in the task of open relation classification. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2018/4929674 |