Loading…
Characterization of a Low-Cost, Monolithically Integrated, Tunable 10G Transmitter for Wavelength Agile PONs
Dynamically reconfigurable passive optical networks (PONs) using time-division multiplexing and dense wavelength division multiplexing will require low-cost, high-performance customer premises equipment to be economically viable. In particular, substantial cost savings can be achieved through the us...
Saved in:
Published in: | IEEE journal of quantum electronics 2018-12, Vol.54 (6), p.1-12 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dynamically reconfigurable passive optical networks (PONs) using time-division multiplexing and dense wavelength division multiplexing will require low-cost, high-performance customer premises equipment to be economically viable. In particular, substantial cost savings can be achieved through the use of efficient re-growth free, foundry-compatible fabrication techniques. Using this strategy, this paper presents the first detailed characterization of a monolithically integrated transmitter comprised of a discretely tunable slotted Fabry-Pérot ridge waveguide laser, an absorptive modulator and a semiconductor optical amplifier (SOA) produced using a standard off-the-shelf AlInGaAs/InP multiple quantum well epitaxial structure. This first generation device demonstrates a discrete single-mode tuning range of approximately 12 nm between 1551nm and 1563 nm with a side-mode suppression ratio ≥30 dB. Moreover, the integrated modulator section is shown to support transmission at 10 Gb/s using non-return to zero on-off keying with an extinction ratio in excess of 8 dB. Furthermore, using a time-resolved chirp measurement technique to examine dynamic deviations in the set carrier frequency, the modulator section exhibits a chirp contribution of |
---|---|
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/JQE.2018.2874628 |