Loading…
Performance investigation of micro-pocketed textured pad thrust bearing
Purpose The purpose of this paper is to conceive a new surface texture incorporating a tiny shape among the micro-pockets (with circular, rectangular, trapezoidal and triangular cross-sections) and dimples (cylindrical, hemispherical and ellipsoidal) for exploring to enhance the maximum possible per...
Saved in:
Published in: | Industrial lubrication and tribology 2018-11, Vol.70 (8), p.1388-1395 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
The purpose of this paper is to conceive a new surface texture incorporating a tiny shape among the micro-pockets (with circular, rectangular, trapezoidal and triangular cross-sections) and dimples (cylindrical, hemispherical and ellipsoidal) for exploring to enhance the maximum possible performance behaviors of sector shape pad thrust bearing.
Design/methodology/approach
Numerical simulation of hydrodynamically lubricated sector shape textured pad thrust bearing has been presented incorporating thermal and cavitation effects. The coupled solution of governing equations (Reynolds equation, film thickness expression, viscosity–temperature relation, energy equation and Laplace equation) has been achieved using finite difference method and Gauss–Seidel iterative scheme.
Findings
With new textured pads, higher load-carrying capacity and lower coefficient of friction are obtained in comparison to plain sector shape pad. Texture pattern comprising square cross-sectional pockets yields higher load-carrying capacity and lower coefficient of friction in comparison to other cross-sectional shapes (circular, trapezoidal and triangular) of pockets considered herein.
Originality/value
This study reports a new texture, which involves micro-pockets of square cross-sectional shapes to improve the performance behavior of sector shape pad thrust bearing. About 75 per cent increase in load carrying capacity and 42 per cent reduction in coefficient of friction have been achieved with pad having new texture in comparison to conventional pad. |
---|---|
ISSN: | 0036-8792 1758-5775 |
DOI: | 10.1108/ILT-10-2017-0302 |