Loading…

Charge storage mechanism and degradation of P2-type sodium transition metal oxides in aqueous electrolytes

Few transition metal oxides exhibit sufficient stability for aqueous ion intercalation from neutral pH electrolytes for low-cost aqueous Na + batteries and battery-type desalinators. P2 layered Na + manganese-rich oxides have high theoretical capacities and voltages for Na + storage and are extensiv...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (44), p.22266-22276
Main Authors: Boyd, Shelby, Dhall, Rohan, LeBeau, James M., Augustyn, Veronica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c298t-98912932bd52354f1171aeca5a84a62ed030a58c24a82ce2f07e34585d8348753
cites cdi_FETCH-LOGICAL-c298t-98912932bd52354f1171aeca5a84a62ed030a58c24a82ce2f07e34585d8348753
container_end_page 22276
container_issue 44
container_start_page 22266
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Boyd, Shelby
Dhall, Rohan
LeBeau, James M.
Augustyn, Veronica
description Few transition metal oxides exhibit sufficient stability for aqueous ion intercalation from neutral pH electrolytes for low-cost aqueous Na + batteries and battery-type desalinators. P2 layered Na + manganese-rich oxides have high theoretical capacities and voltages for Na + storage and are extensively investigated for non-aqueous Na + batteries. However, the charge storage mechanism and factors controlling interlayer chemistry and redox behavior of these materials in aqueous electrolytes have not been determined. Here, we take a significant step in establishing their aqueous electrochemical behavior by investigating a series of P2 oxides that exhibit a range of stability in water and ambient air: Na 0.62 Ni 0.22 Mn 0.66 Fe 0.10 O 2 (NaNMFe), Na 0.61 Ni 0.22 Mn 0.66 Co 0.10 O 2 (NaNMCo), Na 0.64 Ni 0.22 Mn 0.66 Cu 0.11 O 2 (NaNMCu), and Na 0.64 Mn 0.62 Cu 0.31 O 2 (NaMCu). Depending on the transition metal composition and potential, all materials exhibit significant irreversible Na + loss during the first anodic cycle followed by water intercalation into the interlayer. The presence of water causes conversion into birnessite-like phases and microscopic exfoliation of the particles. The interlayer affinity for water is primarily driven by the Na + content, which can be tuned by the transition metal composition and the maximum anodic potential during electrochemical cycling. The interlayer water affects the reversible capacity and cycling stability of the oxides, with the highest reversible capacity (∼40 mA h g −1 delivered in ∼30 minutes) obtained with NaNMCo. These results present the first studies on the structural effects of aqueous electrochemistry in P2 oxides, highlight the significant differences in the electrochemical behavior of P2 oxides in aqueous vs. non-aqueous electrolytes, and provide guidance on how to use the transition metal chemistry to tune their aqueous charge storage behavior.
doi_str_mv 10.1039/C8TA08367C
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132434225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132434225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-98912932bd52354f1171aeca5a84a62ed030a58c24a82ce2f07e34585d8348753</originalsourceid><addsrcrecordid>eNpFkM1Lw0AQxRdRsNRe_AsWvAnR_Ux2jyX4BQU91HMYs5M2JcnW3Q3Y_97Uis7lDcyP94ZHyDVnd5xJe1-a9ZIZmRflGZkJpllWKJuf_-3GXJJFjDs2jWEst3ZGduUWwgZpTD7ApD3WWxja2FMYHHW4CeAgtX6gvqFvIkuH_QR71449TQGG2P4ce0zQUf_VOoy0HSh8jujHSLHDOgXfHRLGK3LRQBdx8atz8v74sC6fs9Xr00u5XGW1sCZl1lgurBQfTgupVcN5wQFr0GAU5AIdkwy0qYUCI2oUDStQKm20M1KZQss5uTn57oOf3oip2vkxDFNkJbgUSiohjtTtiaqDjzFgU-1D20M4VJxVxzqr_zrlN2C9Z2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132434225</pqid></control><display><type>article</type><title>Charge storage mechanism and degradation of P2-type sodium transition metal oxides in aqueous electrolytes</title><source>Royal Society of Chemistry</source><creator>Boyd, Shelby ; Dhall, Rohan ; LeBeau, James M. ; Augustyn, Veronica</creator><creatorcontrib>Boyd, Shelby ; Dhall, Rohan ; LeBeau, James M. ; Augustyn, Veronica</creatorcontrib><description>Few transition metal oxides exhibit sufficient stability for aqueous ion intercalation from neutral pH electrolytes for low-cost aqueous Na + batteries and battery-type desalinators. P2 layered Na + manganese-rich oxides have high theoretical capacities and voltages for Na + storage and are extensively investigated for non-aqueous Na + batteries. However, the charge storage mechanism and factors controlling interlayer chemistry and redox behavior of these materials in aqueous electrolytes have not been determined. Here, we take a significant step in establishing their aqueous electrochemical behavior by investigating a series of P2 oxides that exhibit a range of stability in water and ambient air: Na 0.62 Ni 0.22 Mn 0.66 Fe 0.10 O 2 (NaNMFe), Na 0.61 Ni 0.22 Mn 0.66 Co 0.10 O 2 (NaNMCo), Na 0.64 Ni 0.22 Mn 0.66 Cu 0.11 O 2 (NaNMCu), and Na 0.64 Mn 0.62 Cu 0.31 O 2 (NaMCu). Depending on the transition metal composition and potential, all materials exhibit significant irreversible Na + loss during the first anodic cycle followed by water intercalation into the interlayer. The presence of water causes conversion into birnessite-like phases and microscopic exfoliation of the particles. The interlayer affinity for water is primarily driven by the Na + content, which can be tuned by the transition metal composition and the maximum anodic potential during electrochemical cycling. The interlayer water affects the reversible capacity and cycling stability of the oxides, with the highest reversible capacity (∼40 mA h g −1 delivered in ∼30 minutes) obtained with NaNMCo. These results present the first studies on the structural effects of aqueous electrochemistry in P2 oxides, highlight the significant differences in the electrochemical behavior of P2 oxides in aqueous vs. non-aqueous electrolytes, and provide guidance on how to use the transition metal chemistry to tune their aqueous charge storage behavior.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA08367C</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aqueous electrolytes ; Batteries ; Composition ; Cycles ; Electrochemical analysis ; Electrochemistry ; Electrolytes ; Intercalation ; Interlayers ; Manganese ; Metal oxides ; Metals ; Nonaqueous electrolytes ; Organic chemistry ; Oxides ; Sodium ; Stability ; Storage ; Storage batteries ; Transition metal oxides ; Transition metals</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (44), p.22266-22276</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-98912932bd52354f1171aeca5a84a62ed030a58c24a82ce2f07e34585d8348753</citedby><cites>FETCH-LOGICAL-c298t-98912932bd52354f1171aeca5a84a62ed030a58c24a82ce2f07e34585d8348753</cites><orcidid>0000-0002-6075-7481 ; 0000-0001-9885-2882 ; 0000-0002-7726-3533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Boyd, Shelby</creatorcontrib><creatorcontrib>Dhall, Rohan</creatorcontrib><creatorcontrib>LeBeau, James M.</creatorcontrib><creatorcontrib>Augustyn, Veronica</creatorcontrib><title>Charge storage mechanism and degradation of P2-type sodium transition metal oxides in aqueous electrolytes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Few transition metal oxides exhibit sufficient stability for aqueous ion intercalation from neutral pH electrolytes for low-cost aqueous Na + batteries and battery-type desalinators. P2 layered Na + manganese-rich oxides have high theoretical capacities and voltages for Na + storage and are extensively investigated for non-aqueous Na + batteries. However, the charge storage mechanism and factors controlling interlayer chemistry and redox behavior of these materials in aqueous electrolytes have not been determined. Here, we take a significant step in establishing their aqueous electrochemical behavior by investigating a series of P2 oxides that exhibit a range of stability in water and ambient air: Na 0.62 Ni 0.22 Mn 0.66 Fe 0.10 O 2 (NaNMFe), Na 0.61 Ni 0.22 Mn 0.66 Co 0.10 O 2 (NaNMCo), Na 0.64 Ni 0.22 Mn 0.66 Cu 0.11 O 2 (NaNMCu), and Na 0.64 Mn 0.62 Cu 0.31 O 2 (NaMCu). Depending on the transition metal composition and potential, all materials exhibit significant irreversible Na + loss during the first anodic cycle followed by water intercalation into the interlayer. The presence of water causes conversion into birnessite-like phases and microscopic exfoliation of the particles. The interlayer affinity for water is primarily driven by the Na + content, which can be tuned by the transition metal composition and the maximum anodic potential during electrochemical cycling. The interlayer water affects the reversible capacity and cycling stability of the oxides, with the highest reversible capacity (∼40 mA h g −1 delivered in ∼30 minutes) obtained with NaNMCo. These results present the first studies on the structural effects of aqueous electrochemistry in P2 oxides, highlight the significant differences in the electrochemical behavior of P2 oxides in aqueous vs. non-aqueous electrolytes, and provide guidance on how to use the transition metal chemistry to tune their aqueous charge storage behavior.</description><subject>Aqueous electrolytes</subject><subject>Batteries</subject><subject>Composition</subject><subject>Cycles</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Intercalation</subject><subject>Interlayers</subject><subject>Manganese</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Nonaqueous electrolytes</subject><subject>Organic chemistry</subject><subject>Oxides</subject><subject>Sodium</subject><subject>Stability</subject><subject>Storage</subject><subject>Storage batteries</subject><subject>Transition metal oxides</subject><subject>Transition metals</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkM1Lw0AQxRdRsNRe_AsWvAnR_Ux2jyX4BQU91HMYs5M2JcnW3Q3Y_97Uis7lDcyP94ZHyDVnd5xJe1-a9ZIZmRflGZkJpllWKJuf_-3GXJJFjDs2jWEst3ZGduUWwgZpTD7ApD3WWxja2FMYHHW4CeAgtX6gvqFvIkuH_QR71449TQGG2P4ce0zQUf_VOoy0HSh8jujHSLHDOgXfHRLGK3LRQBdx8atz8v74sC6fs9Xr00u5XGW1sCZl1lgurBQfTgupVcN5wQFr0GAU5AIdkwy0qYUCI2oUDStQKm20M1KZQss5uTn57oOf3oip2vkxDFNkJbgUSiohjtTtiaqDjzFgU-1D20M4VJxVxzqr_zrlN2C9Z2A</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Boyd, Shelby</creator><creator>Dhall, Rohan</creator><creator>LeBeau, James M.</creator><creator>Augustyn, Veronica</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6075-7481</orcidid><orcidid>https://orcid.org/0000-0001-9885-2882</orcidid><orcidid>https://orcid.org/0000-0002-7726-3533</orcidid></search><sort><creationdate>2018</creationdate><title>Charge storage mechanism and degradation of P2-type sodium transition metal oxides in aqueous electrolytes</title><author>Boyd, Shelby ; Dhall, Rohan ; LeBeau, James M. ; Augustyn, Veronica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-98912932bd52354f1171aeca5a84a62ed030a58c24a82ce2f07e34585d8348753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aqueous electrolytes</topic><topic>Batteries</topic><topic>Composition</topic><topic>Cycles</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Intercalation</topic><topic>Interlayers</topic><topic>Manganese</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Nonaqueous electrolytes</topic><topic>Organic chemistry</topic><topic>Oxides</topic><topic>Sodium</topic><topic>Stability</topic><topic>Storage</topic><topic>Storage batteries</topic><topic>Transition metal oxides</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyd, Shelby</creatorcontrib><creatorcontrib>Dhall, Rohan</creatorcontrib><creatorcontrib>LeBeau, James M.</creatorcontrib><creatorcontrib>Augustyn, Veronica</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyd, Shelby</au><au>Dhall, Rohan</au><au>LeBeau, James M.</au><au>Augustyn, Veronica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge storage mechanism and degradation of P2-type sodium transition metal oxides in aqueous electrolytes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>44</issue><spage>22266</spage><epage>22276</epage><pages>22266-22276</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Few transition metal oxides exhibit sufficient stability for aqueous ion intercalation from neutral pH electrolytes for low-cost aqueous Na + batteries and battery-type desalinators. P2 layered Na + manganese-rich oxides have high theoretical capacities and voltages for Na + storage and are extensively investigated for non-aqueous Na + batteries. However, the charge storage mechanism and factors controlling interlayer chemistry and redox behavior of these materials in aqueous electrolytes have not been determined. Here, we take a significant step in establishing their aqueous electrochemical behavior by investigating a series of P2 oxides that exhibit a range of stability in water and ambient air: Na 0.62 Ni 0.22 Mn 0.66 Fe 0.10 O 2 (NaNMFe), Na 0.61 Ni 0.22 Mn 0.66 Co 0.10 O 2 (NaNMCo), Na 0.64 Ni 0.22 Mn 0.66 Cu 0.11 O 2 (NaNMCu), and Na 0.64 Mn 0.62 Cu 0.31 O 2 (NaMCu). Depending on the transition metal composition and potential, all materials exhibit significant irreversible Na + loss during the first anodic cycle followed by water intercalation into the interlayer. The presence of water causes conversion into birnessite-like phases and microscopic exfoliation of the particles. The interlayer affinity for water is primarily driven by the Na + content, which can be tuned by the transition metal composition and the maximum anodic potential during electrochemical cycling. The interlayer water affects the reversible capacity and cycling stability of the oxides, with the highest reversible capacity (∼40 mA h g −1 delivered in ∼30 minutes) obtained with NaNMCo. These results present the first studies on the structural effects of aqueous electrochemistry in P2 oxides, highlight the significant differences in the electrochemical behavior of P2 oxides in aqueous vs. non-aqueous electrolytes, and provide guidance on how to use the transition metal chemistry to tune their aqueous charge storage behavior.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TA08367C</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6075-7481</orcidid><orcidid>https://orcid.org/0000-0001-9885-2882</orcidid><orcidid>https://orcid.org/0000-0002-7726-3533</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (44), p.22266-22276
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2132434225
source Royal Society of Chemistry
subjects Aqueous electrolytes
Batteries
Composition
Cycles
Electrochemical analysis
Electrochemistry
Electrolytes
Intercalation
Interlayers
Manganese
Metal oxides
Metals
Nonaqueous electrolytes
Organic chemistry
Oxides
Sodium
Stability
Storage
Storage batteries
Transition metal oxides
Transition metals
title Charge storage mechanism and degradation of P2-type sodium transition metal oxides in aqueous electrolytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20storage%20mechanism%20and%20degradation%20of%20P2-type%20sodium%20transition%20metal%20oxides%20in%20aqueous%20electrolytes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Boyd,%20Shelby&rft.date=2018&rft.volume=6&rft.issue=44&rft.spage=22266&rft.epage=22276&rft.pages=22266-22276&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA08367C&rft_dat=%3Cproquest_cross%3E2132434225%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-98912932bd52354f1171aeca5a84a62ed030a58c24a82ce2f07e34585d8348753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2132434225&rft_id=info:pmid/&rfr_iscdi=true