Loading…
On 1/N diagrammatics in the SYK model beyond the conformal limit
In the present work we discuss aspects of the 1/N expansion in the SYK model, formulated in terms of the semiclassical expansion of the bilocal field path integral. We derive cutting rules, which are applicable for all planar vertices in the bilocal field diagrams. We show that these cutting rules l...
Saved in:
Published in: | arXiv.org 2018-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Aref'eva, Irina Khramtsov, Mikhail Tikhanovskaya, Maria |
description | In the present work we discuss aspects of the 1/N expansion in the SYK model, formulated in terms of the semiclassical expansion of the bilocal field path integral. We derive cutting rules, which are applicable for all planar vertices in the bilocal field diagrams. We show that these cutting rules lead to novel identities on higher-point correlators, which could be used to constrain their form beyond the solvable conformal limit. We also demonstrate how the cutting rules can simplify the computation of amplitudes on an example of the six-point function. |
doi_str_mv | 10.48550/arxiv.1811.04837 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2132520254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132520254</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-de354fd91dadbc0b01b44c04c3bccad919c68d369fc836e30cb8e043832947013</originalsourceid><addsrcrecordid>eNotjbtOwzAUQC0kJKrSD2CzxJz02vc6cTZQxUtUdKALU-VXwFUSg5Mi-HsqYDrSGc5h7EJASVopWJr8FT9LoYUogTTWJ2wmEUWhScozthjHPQDIqpZK4YxdbQYulk_cR_OaTd-bKbqRx4FPb4E_vzzyPvnQcRu-0-B_pUtDm3JvOt7FPk7n7LQ13RgW_5yz7e3NdnVfrDd3D6vrdWGUpMIHVNT6RnjjrQMLwhI5IIfWOXP0jau0x6ppncYqIDirAxBqlA3VIHDOLv-y7zl9HMI47fbpkIfjcScFSiVBKsIfp8tJng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132520254</pqid></control><display><type>article</type><title>On 1/N diagrammatics in the SYK model beyond the conformal limit</title><source>Publicly Available Content (ProQuest)</source><creator>Aref'eva, Irina ; Khramtsov, Mikhail ; Tikhanovskaya, Maria</creator><creatorcontrib>Aref'eva, Irina ; Khramtsov, Mikhail ; Tikhanovskaya, Maria</creatorcontrib><description>In the present work we discuss aspects of the 1/N expansion in the SYK model, formulated in terms of the semiclassical expansion of the bilocal field path integral. We derive cutting rules, which are applicable for all planar vertices in the bilocal field diagrams. We show that these cutting rules lead to novel identities on higher-point correlators, which could be used to constrain their form beyond the solvable conformal limit. We also demonstrate how the cutting rules can simplify the computation of amplitudes on an example of the six-point function.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1811.04837</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Correlators ; Cutting parameters</subject><ispartof>arXiv.org, 2018-11</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2132520254?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Aref'eva, Irina</creatorcontrib><creatorcontrib>Khramtsov, Mikhail</creatorcontrib><creatorcontrib>Tikhanovskaya, Maria</creatorcontrib><title>On 1/N diagrammatics in the SYK model beyond the conformal limit</title><title>arXiv.org</title><description>In the present work we discuss aspects of the 1/N expansion in the SYK model, formulated in terms of the semiclassical expansion of the bilocal field path integral. We derive cutting rules, which are applicable for all planar vertices in the bilocal field diagrams. We show that these cutting rules lead to novel identities on higher-point correlators, which could be used to constrain their form beyond the solvable conformal limit. We also demonstrate how the cutting rules can simplify the computation of amplitudes on an example of the six-point function.</description><subject>Apexes</subject><subject>Correlators</subject><subject>Cutting parameters</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjbtOwzAUQC0kJKrSD2CzxJz02vc6cTZQxUtUdKALU-VXwFUSg5Mi-HsqYDrSGc5h7EJASVopWJr8FT9LoYUogTTWJ2wmEUWhScozthjHPQDIqpZK4YxdbQYulk_cR_OaTd-bKbqRx4FPb4E_vzzyPvnQcRu-0-B_pUtDm3JvOt7FPk7n7LQ13RgW_5yz7e3NdnVfrDd3D6vrdWGUpMIHVNT6RnjjrQMLwhI5IIfWOXP0jau0x6ppncYqIDirAxBqlA3VIHDOLv-y7zl9HMI47fbpkIfjcScFSiVBKsIfp8tJng</recordid><startdate>20181112</startdate><enddate>20181112</enddate><creator>Aref'eva, Irina</creator><creator>Khramtsov, Mikhail</creator><creator>Tikhanovskaya, Maria</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181112</creationdate><title>On 1/N diagrammatics in the SYK model beyond the conformal limit</title><author>Aref'eva, Irina ; Khramtsov, Mikhail ; Tikhanovskaya, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-de354fd91dadbc0b01b44c04c3bccad919c68d369fc836e30cb8e043832947013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Apexes</topic><topic>Correlators</topic><topic>Cutting parameters</topic><toplevel>online_resources</toplevel><creatorcontrib>Aref'eva, Irina</creatorcontrib><creatorcontrib>Khramtsov, Mikhail</creatorcontrib><creatorcontrib>Tikhanovskaya, Maria</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aref'eva, Irina</au><au>Khramtsov, Mikhail</au><au>Tikhanovskaya, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On 1/N diagrammatics in the SYK model beyond the conformal limit</atitle><jtitle>arXiv.org</jtitle><date>2018-11-12</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In the present work we discuss aspects of the 1/N expansion in the SYK model, formulated in terms of the semiclassical expansion of the bilocal field path integral. We derive cutting rules, which are applicable for all planar vertices in the bilocal field diagrams. We show that these cutting rules lead to novel identities on higher-point correlators, which could be used to constrain their form beyond the solvable conformal limit. We also demonstrate how the cutting rules can simplify the computation of amplitudes on an example of the six-point function.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1811.04837</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2132520254 |
source | Publicly Available Content (ProQuest) |
subjects | Apexes Correlators Cutting parameters |
title | On 1/N diagrammatics in the SYK model beyond the conformal limit |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%201/N%20diagrammatics%20in%20the%20SYK%20model%20beyond%20the%20conformal%20limit&rft.jtitle=arXiv.org&rft.au=Aref'eva,%20Irina&rft.date=2018-11-12&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1811.04837&rft_dat=%3Cproquest%3E2132520254%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-de354fd91dadbc0b01b44c04c3bccad919c68d369fc836e30cb8e043832947013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2132520254&rft_id=info:pmid/&rfr_iscdi=true |