Loading…

Preconditioned space-time boundary element methods for the one-dimensional heat equation

In this note we describe a space-time boundary element discretization of the heat equation and an efficient and robust preconditioning strategy which is based on the use of boundary integral operators of opposite orders, but which requires a suitable stability condition for the boundary element spac...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-11
Main Authors: Dohr, Stefan, Steinbach, Olaf
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dohr, Stefan
Steinbach, Olaf
description In this note we describe a space-time boundary element discretization of the heat equation and an efficient and robust preconditioning strategy which is based on the use of boundary integral operators of opposite orders, but which requires a suitable stability condition for the boundary element spaces used for the discretization. We demonstrate the method for the simple spatially one-dimensional case. However, the presented results, particularly the stability analysis of the boundary element spaces, can be used to extend the method to the two- and three-dimensional problem.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2133091352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133091352</sourcerecordid><originalsourceid>FETCH-proquest_journals_21330913523</originalsourceid><addsrcrecordid>eNqNzL0KwjAUhuEgCBbtPRxwDqSJ9WcWxdHBwa3E5pS2tEmbkwzevRG8AKdveZ9vwTKpVMGPOylXLCfqhRByf5BlqTL2vHusnTVd6JxFAzTpGnnoRoSXi9Zo_wYccEQbYMTQOkPQOA-hRUiAm1RaSlYP0KIOgHPU368NWzZ6IMx_u2bb6-VxvvHJuzkihap30SdGlSyUEqdClVL9V30AEJBCqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133091352</pqid></control><display><type>article</type><title>Preconditioned space-time boundary element methods for the one-dimensional heat equation</title><source>Publicly Available Content Database</source><creator>Dohr, Stefan ; Steinbach, Olaf</creator><creatorcontrib>Dohr, Stefan ; Steinbach, Olaf</creatorcontrib><description>In this note we describe a space-time boundary element discretization of the heat equation and an efficient and robust preconditioning strategy which is based on the use of boundary integral operators of opposite orders, but which requires a suitable stability condition for the boundary element spaces used for the discretization. We demonstrate the method for the simple spatially one-dimensional case. However, the presented results, particularly the stability analysis of the boundary element spaces, can be used to extend the method to the two- and three-dimensional problem.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary element method ; Dimensional stability ; Discretization ; Mathematical analysis ; Operators (mathematics) ; Preconditioning ; Spacetime ; Stability analysis ; Thermodynamics</subject><ispartof>arXiv.org, 2018-11</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2133091352?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Dohr, Stefan</creatorcontrib><creatorcontrib>Steinbach, Olaf</creatorcontrib><title>Preconditioned space-time boundary element methods for the one-dimensional heat equation</title><title>arXiv.org</title><description>In this note we describe a space-time boundary element discretization of the heat equation and an efficient and robust preconditioning strategy which is based on the use of boundary integral operators of opposite orders, but which requires a suitable stability condition for the boundary element spaces used for the discretization. We demonstrate the method for the simple spatially one-dimensional case. However, the presented results, particularly the stability analysis of the boundary element spaces, can be used to extend the method to the two- and three-dimensional problem.</description><subject>Boundary element method</subject><subject>Dimensional stability</subject><subject>Discretization</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Preconditioning</subject><subject>Spacetime</subject><subject>Stability analysis</subject><subject>Thermodynamics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzL0KwjAUhuEgCBbtPRxwDqSJ9WcWxdHBwa3E5pS2tEmbkwzevRG8AKdveZ9vwTKpVMGPOylXLCfqhRByf5BlqTL2vHusnTVd6JxFAzTpGnnoRoSXi9Zo_wYccEQbYMTQOkPQOA-hRUiAm1RaSlYP0KIOgHPU368NWzZ6IMx_u2bb6-VxvvHJuzkihap30SdGlSyUEqdClVL9V30AEJBCqg</recordid><startdate>20181113</startdate><enddate>20181113</enddate><creator>Dohr, Stefan</creator><creator>Steinbach, Olaf</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181113</creationdate><title>Preconditioned space-time boundary element methods for the one-dimensional heat equation</title><author>Dohr, Stefan ; Steinbach, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21330913523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary element method</topic><topic>Dimensional stability</topic><topic>Discretization</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Preconditioning</topic><topic>Spacetime</topic><topic>Stability analysis</topic><topic>Thermodynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Dohr, Stefan</creatorcontrib><creatorcontrib>Steinbach, Olaf</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dohr, Stefan</au><au>Steinbach, Olaf</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Preconditioned space-time boundary element methods for the one-dimensional heat equation</atitle><jtitle>arXiv.org</jtitle><date>2018-11-13</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In this note we describe a space-time boundary element discretization of the heat equation and an efficient and robust preconditioning strategy which is based on the use of boundary integral operators of opposite orders, but which requires a suitable stability condition for the boundary element spaces used for the discretization. We demonstrate the method for the simple spatially one-dimensional case. However, the presented results, particularly the stability analysis of the boundary element spaces, can be used to extend the method to the two- and three-dimensional problem.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2133091352
source Publicly Available Content Database
subjects Boundary element method
Dimensional stability
Discretization
Mathematical analysis
Operators (mathematics)
Preconditioning
Spacetime
Stability analysis
Thermodynamics
title Preconditioned space-time boundary element methods for the one-dimensional heat equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Preconditioned%20space-time%20boundary%20element%20methods%20for%20the%20one-dimensional%20heat%20equation&rft.jtitle=arXiv.org&rft.au=Dohr,%20Stefan&rft.date=2018-11-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2133091352%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21330913523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2133091352&rft_id=info:pmid/&rfr_iscdi=true