Loading…
New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide‐Based Small‐Molecules with Nonconjugated Backbones
State‐of‐the‐art perovskite‐based solar cells employ expensive, organic hole transporting materials (HTMs) such as Spiro‐OMeTAD that, in turn, limits the commercialization of this promising technology. Herein an HTM (EDOT‐Amide‐TPA) is reported in which a functional amide‐based backbone is introduce...
Saved in:
Published in: | Advanced energy materials 2018-11, Vol.8 (32), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | State‐of‐the‐art perovskite‐based solar cells employ expensive, organic hole transporting materials (HTMs) such as Spiro‐OMeTAD that, in turn, limits the commercialization of this promising technology. Herein an HTM (EDOT‐Amide‐TPA) is reported in which a functional amide‐based backbone is introduced, which allows this material to be synthesized in a simple condensation reaction with an estimated cost of |
---|---|
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.201801605 |