Loading…

Trajectory optimisation of six degree of freedom aircraft using differential flatness

The flatness of a six-degree-of-freedom (6DoF) aircraft model with conventional control surfaces – aileron, flap, rudder and elevator, along with thrust vectoring ability is established in this work. Trajectory optimisation of an aircraft can be cast as an inverse problem where the solution for cont...

Full description

Saved in:
Bibliographic Details
Published in:Aeronautical journal 2018-11, Vol.122 (1257), p.1788-1810
Main Authors: Elango, P., Mohan, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The flatness of a six-degree-of-freedom (6DoF) aircraft model with conventional control surfaces – aileron, flap, rudder and elevator, along with thrust vectoring ability is established in this work. Trajectory optimisation of an aircraft can be cast as an inverse problem where the solution for control inputs that yield desired trajectories for certain states is sought. The solution to the inverse problems for certain systems is made tractable when they exhibit differential flatness. Flatness-based trajectory optimisation has a significant advantage over an equivalent collocation-based method in terms of computational efficiency and viability for real-time implementation. An application for the flatness of 6DoF aircraft is shown in the trajectory optimisation for dynamic soaring, and its connection with an equivalent 3DoF flatness-based implementation is also brought out. The results are compared with that from a collocation-based approach.
ISSN:0001-9240
2059-6464
DOI:10.1017/aer.2018.99