Loading…
Multi-scale hybrid numerical model for the study of mass transfer through a microporous artificial membrane
Quantification of mass transfer processes across micro-porous membranes can give valuable insight in applications of industrial and medical relevance. In this paper, a hybrid lattice Boltzmann-Finite differences (LBM-FD) code with non-uniform grid that simulates the mass transfer on a chip-like micr...
Saved in:
Published in: | Heat and mass transfer 2018-12, Vol.54 (12), p.3707-3714 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantification of mass transfer processes across micro-porous membranes can give valuable insight in applications of industrial and medical relevance. In this paper, a hybrid lattice Boltzmann-Finite differences (LBM-FD) code with non-uniform grid that simulates the mass transfer on a chip-like micro-device with an embedded micro-porous membrane has been developed. The model is validated showing good agreement with results of the Graetz-Leveque problem, even for Péclet numbers above 10
6
, where conventional numerical methods fail to predict the correct behavior. The errors obtained in our simulations are below 1%. Simulations of the micro-porous membrane model in two and three dimensions show a linear scaling of the average Sherwood number with the number of pores and a value 1/3 of the scaling exponent of the Péclet number. |
---|---|
ISSN: | 0947-7411 1432-1181 |
DOI: | 10.1007/s00231-018-2395-2 |