Loading…

Increased Motor Cortex Excitability for Concealed Visual Information

Deceptive behavior involves complex neural processes involving the primary motor cortex. The dynamics of this motor cortex excitability prior to lying are still not well understood. We sought to examine whether corticospinal excitability can be used to suggest the presence of deliberately concealed...

Full description

Saved in:
Bibliographic Details
Published in:Journal of psychophysiology 2019-10, Vol.33 (4), p.286-295
Main Authors: Hadar, Aviad A, Lazarovits, Avi, Yarrow, Kielan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deceptive behavior involves complex neural processes involving the primary motor cortex. The dynamics of this motor cortex excitability prior to lying are still not well understood. We sought to examine whether corticospinal excitability can be used to suggest the presence of deliberately concealed information in a modified version of the guilty knowledge test (GKT). Participants pressed keys to either truthfully or deceitfully indicate their familiarity with a series of faces. Motor-evoked potentials (MEPs) were recorded during response preparation to measure muscle-specific neural excitability. We hypothesized that MEPs would increase during the deceptive condition not only in the lie-telling finger but also in the suppressed truth-telling finger. We report a group-level increase in overall corticospinal excitability 300 ms following stimulus onset during the deceptive condition, without specific activation of the neural representation of the truth-telling finger. We discuss cognitive processes, particularly response conflict and/or automated responses to familiar stimuli, which may drive the observed nonspecific increase of motor excitability in deception.
ISSN:0269-8803
2151-2124
DOI:10.1027/0269-8803/a000230