Loading…
Future climatic suitability of the Emilia-Romagna (Italy) region for grape production
Grape production is highly responsive to weather conditions and therefore very sensitive to climate change. To evaluate how viticulture in the traditional Italian wine region Emilia-Romagna could be affected by climate change, several bioclimatic indices describing the suitability for grapevine prod...
Saved in:
Published in: | Regional environmental change 2019-02, Vol.19 (2), p.599-614 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Grape production is highly responsive to weather conditions and therefore very sensitive to climate change. To evaluate how viticulture in the traditional Italian wine region Emilia-Romagna could be affected by climate change, several bioclimatic indices describing the suitability for grapevine production were calculated for two future periods (2011–2040 and 2071–2100) using CORDEX (Coordinated Regional Climate Downscaling Experiment) high-resolution climate simulations under two Representative Concentration Pathways (RCP) scenarios—RCP 4.5 and RCP 8.5. The projections for both of the RCP scenarios showed that most of the Emilia-Romagna region will remain suitable for grape production during the period 2011–2040. By the end of the twenty-first century, the suitability to produce grapes in Emilia-Romagna could be threatened to a greater or smaller extent, depending on the scenario. During the period 2071–2100, the entire Emilia-Romagna region will be too hot for grape production under the RCP 8.5 scenario. Under the RCP 4.5 scenario, changes will be milder, suggesting that the Emilia-Romagna region could still be suitable for grape cultivation by the end of the twenty-first century but would likely require certain adjustments. |
---|---|
ISSN: | 1436-3798 1436-378X |
DOI: | 10.1007/s10113-018-1431-6 |