Loading…
Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow
We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier–Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain Ω ⊂ R 3 under no-slip boundary conditions. LNSE is supplemented with sm...
Saved in:
Published in: | Journal of mathematical fluid mechanics 2018-12, Vol.20 (4), p.1405-1426 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-a08a673a5c320631efb313d18e4ce632ebe181fecee8e450910eaa2a5408744c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-a08a673a5c320631efb313d18e4ce632ebe181fecee8e450910eaa2a5408744c3 |
container_end_page | 1426 |
container_issue | 4 |
container_start_page | 1405 |
container_title | Journal of mathematical fluid mechanics |
container_volume | 20 |
creator | Gie, Gung-Min Kelliher, James P. Mazzucato, Anna L. |
description | We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier–Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain
Ω
⊂
R
3
under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0,
T
],
0
<
T
<
∞
, obtained via an asymptotic expansion in the viscosity parameter, such that the difference between the linearized Navier–Stokes solution and the proposed expansion vanishes as the viscosity tends to zero in
L
2
(
Ω
)
uniformly in time, and remains bounded independently of viscosity in the space
L
2
(
[
0
,
T
]
;
H
1
(
Ω
)
)
. We make this construction both for a 3D channel domain and a smooth domain with a curved boundary. The zero-viscosity limit for LNSE, that is, the convergence of the LNSE solution to the solution of the linearized Euler equations around the same profile when viscosity vanishes, then naturally follows from the validity of this asymptotic expansion. This article generalizes and improves earlier works, such as Temam and Wang (Indiana Univ Math J 45(3):863–916,
1996
), Xin and Yanagisawa (Commun Pure Appl Math 52(4):479–541,
1999
), and Gie (Commun Math Sci 12(2):383–400,
2014
). |
doi_str_mv | 10.1007/s00021-018-0371-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2133938703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133938703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a08a673a5c320631efb313d18e4ce632ebe181fecee8e450910eaa2a5408744c3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHaWWAdm7Pw4y1K1gBTBorBiYbnpBFJK3NoJqKy4AzfkJCQEwYrVjGbeezP6GDtGOEWA5MwDgMAAUAUgEwzUDhtgKEQQp5HY_e2F2mcH3i8BMIlSMWD357apFsZteWa25DwvrOP1I_Fr81KS-3z_mNX2iTyfbBpTl7byPCsrMq58owUfuc7NDZ_V38suZ9KsyPHpyr4esr3CrDwd_dQhu5tObseXQXZzcTUeZUEuo7QODCgTJ9JEuRQQS6RiLlEuUFGYUywFzQkVFpQTtaMIUgQyRpgoBJWEYS6H7KTPXTu7acjXemkbV7UntUApU6kSkK0Ke1XurPeOCr125XP7sUbQHUPdM9QtQ90x1Kr1iN7jW231QO4v-X_TF59fdRY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133938703</pqid></control><display><type>article</type><title>Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow</title><source>Springer Nature</source><creator>Gie, Gung-Min ; Kelliher, James P. ; Mazzucato, Anna L.</creator><creatorcontrib>Gie, Gung-Min ; Kelliher, James P. ; Mazzucato, Anna L.</creatorcontrib><description>We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier–Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain
Ω
⊂
R
3
under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0,
T
],
0
<
T
<
∞
, obtained via an asymptotic expansion in the viscosity parameter, such that the difference between the linearized Navier–Stokes solution and the proposed expansion vanishes as the viscosity tends to zero in
L
2
(
Ω
)
uniformly in time, and remains bounded independently of viscosity in the space
L
2
(
[
0
,
T
]
;
H
1
(
Ω
)
)
. We make this construction both for a 3D channel domain and a smooth domain with a curved boundary. The zero-viscosity limit for LNSE, that is, the convergence of the LNSE solution to the solution of the linearized Euler equations around the same profile when viscosity vanishes, then naturally follows from the validity of this asymptotic expansion. This article generalizes and improves earlier works, such as Temam and Wang (Indiana Univ Math J 45(3):863–916,
1996
), Xin and Yanagisawa (Commun Pure Appl Math 52(4):479–541,
1999
), and Gie (Commun Math Sci 12(2):383–400,
2014
).</description><identifier>ISSN: 1422-6928</identifier><identifier>EISSN: 1422-6952</identifier><identifier>DOI: 10.1007/s00021-018-0371-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Asymptotic series ; Boundary conditions ; Boundary layers ; Classical and Continuum Physics ; Euler-Lagrange equation ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluid- and Aerodynamics ; Linearization ; Mathematical analysis ; Mathematical Methods in Physics ; Navier-Stokes equations ; Physics ; Physics and Astronomy ; Rigid walls ; Slip ; Theoretical mathematics ; Viscosity</subject><ispartof>Journal of mathematical fluid mechanics, 2018-12, Vol.20 (4), p.1405-1426</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a08a673a5c320631efb313d18e4ce632ebe181fecee8e450910eaa2a5408744c3</citedby><cites>FETCH-LOGICAL-c359t-a08a673a5c320631efb313d18e4ce632ebe181fecee8e450910eaa2a5408744c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Gie, Gung-Min</creatorcontrib><creatorcontrib>Kelliher, James P.</creatorcontrib><creatorcontrib>Mazzucato, Anna L.</creatorcontrib><title>Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow</title><title>Journal of mathematical fluid mechanics</title><addtitle>J. Math. Fluid Mech</addtitle><description>We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier–Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain
Ω
⊂
R
3
under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0,
T
],
0
<
T
<
∞
, obtained via an asymptotic expansion in the viscosity parameter, such that the difference between the linearized Navier–Stokes solution and the proposed expansion vanishes as the viscosity tends to zero in
L
2
(
Ω
)
uniformly in time, and remains bounded independently of viscosity in the space
L
2
(
[
0
,
T
]
;
H
1
(
Ω
)
)
. We make this construction both for a 3D channel domain and a smooth domain with a curved boundary. The zero-viscosity limit for LNSE, that is, the convergence of the LNSE solution to the solution of the linearized Euler equations around the same profile when viscosity vanishes, then naturally follows from the validity of this asymptotic expansion. This article generalizes and improves earlier works, such as Temam and Wang (Indiana Univ Math J 45(3):863–916,
1996
), Xin and Yanagisawa (Commun Pure Appl Math 52(4):479–541,
1999
), and Gie (Commun Math Sci 12(2):383–400,
2014
).</description><subject>Asymptotic series</subject><subject>Boundary conditions</subject><subject>Boundary layers</subject><subject>Classical and Continuum Physics</subject><subject>Euler-Lagrange equation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rigid walls</subject><subject>Slip</subject><subject>Theoretical mathematics</subject><subject>Viscosity</subject><issn>1422-6928</issn><issn>1422-6952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqVwAHaWWAdm7Pw4y1K1gBTBorBiYbnpBFJK3NoJqKy4AzfkJCQEwYrVjGbeezP6GDtGOEWA5MwDgMAAUAUgEwzUDhtgKEQQp5HY_e2F2mcH3i8BMIlSMWD357apFsZteWa25DwvrOP1I_Fr81KS-3z_mNX2iTyfbBpTl7byPCsrMq58owUfuc7NDZ_V38suZ9KsyPHpyr4esr3CrDwd_dQhu5tObseXQXZzcTUeZUEuo7QODCgTJ9JEuRQQS6RiLlEuUFGYUywFzQkVFpQTtaMIUgQyRpgoBJWEYS6H7KTPXTu7acjXemkbV7UntUApU6kSkK0Ke1XurPeOCr125XP7sUbQHUPdM9QtQ90x1Kr1iN7jW231QO4v-X_TF59fdRY</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Gie, Gung-Min</creator><creator>Kelliher, James P.</creator><creator>Mazzucato, Anna L.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow</title><author>Gie, Gung-Min ; Kelliher, James P. ; Mazzucato, Anna L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a08a673a5c320631efb313d18e4ce632ebe181fecee8e450910eaa2a5408744c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic series</topic><topic>Boundary conditions</topic><topic>Boundary layers</topic><topic>Classical and Continuum Physics</topic><topic>Euler-Lagrange equation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rigid walls</topic><topic>Slip</topic><topic>Theoretical mathematics</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gie, Gung-Min</creatorcontrib><creatorcontrib>Kelliher, James P.</creatorcontrib><creatorcontrib>Mazzucato, Anna L.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gie, Gung-Min</au><au>Kelliher, James P.</au><au>Mazzucato, Anna L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow</atitle><jtitle>Journal of mathematical fluid mechanics</jtitle><stitle>J. Math. Fluid Mech</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>20</volume><issue>4</issue><spage>1405</spage><epage>1426</epage><pages>1405-1426</pages><issn>1422-6928</issn><eissn>1422-6952</eissn><abstract>We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier–Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain
Ω
⊂
R
3
under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0,
T
],
0
<
T
<
∞
, obtained via an asymptotic expansion in the viscosity parameter, such that the difference between the linearized Navier–Stokes solution and the proposed expansion vanishes as the viscosity tends to zero in
L
2
(
Ω
)
uniformly in time, and remains bounded independently of viscosity in the space
L
2
(
[
0
,
T
]
;
H
1
(
Ω
)
)
. We make this construction both for a 3D channel domain and a smooth domain with a curved boundary. The zero-viscosity limit for LNSE, that is, the convergence of the LNSE solution to the solution of the linearized Euler equations around the same profile when viscosity vanishes, then naturally follows from the validity of this asymptotic expansion. This article generalizes and improves earlier works, such as Temam and Wang (Indiana Univ Math J 45(3):863–916,
1996
), Xin and Yanagisawa (Commun Pure Appl Math 52(4):479–541,
1999
), and Gie (Commun Math Sci 12(2):383–400,
2014
).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00021-018-0371-8</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-6928 |
ispartof | Journal of mathematical fluid mechanics, 2018-12, Vol.20 (4), p.1405-1426 |
issn | 1422-6928 1422-6952 |
language | eng |
recordid | cdi_proquest_journals_2133938703 |
source | Springer Nature |
subjects | Asymptotic series Boundary conditions Boundary layers Classical and Continuum Physics Euler-Lagrange equation Fluid dynamics Fluid flow Fluid mechanics Fluid- and Aerodynamics Linearization Mathematical analysis Mathematical Methods in Physics Navier-Stokes equations Physics Physics and Astronomy Rigid walls Slip Theoretical mathematics Viscosity |
title | Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20Layers%20for%20the%20Navier%E2%80%93Stokes%20Equations%20Linearized%20Around%20a%20Stationary%20Euler%20Flow&rft.jtitle=Journal%20of%20mathematical%20fluid%20mechanics&rft.au=Gie,%20Gung-Min&rft.date=2018-12-01&rft.volume=20&rft.issue=4&rft.spage=1405&rft.epage=1426&rft.pages=1405-1426&rft.issn=1422-6928&rft.eissn=1422-6952&rft_id=info:doi/10.1007/s00021-018-0371-8&rft_dat=%3Cproquest_cross%3E2133938703%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-a08a673a5c320631efb313d18e4ce632ebe181fecee8e450910eaa2a5408744c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2133938703&rft_id=info:pmid/&rfr_iscdi=true |