Loading…

Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow

We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier–Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain Ω ⊂ R 3 under no-slip boundary conditions. LNSE is supplemented with sm...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical fluid mechanics 2018-12, Vol.20 (4), p.1405-1426
Main Authors: Gie, Gung-Min, Kelliher, James P., Mazzucato, Anna L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-a08a673a5c320631efb313d18e4ce632ebe181fecee8e450910eaa2a5408744c3
cites cdi_FETCH-LOGICAL-c359t-a08a673a5c320631efb313d18e4ce632ebe181fecee8e450910eaa2a5408744c3
container_end_page 1426
container_issue 4
container_start_page 1405
container_title Journal of mathematical fluid mechanics
container_volume 20
creator Gie, Gung-Min
Kelliher, James P.
Mazzucato, Anna L.
description We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier–Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain Ω ⊂ R 3 under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0,  T ], 0 < T < ∞ , obtained via an asymptotic expansion in the viscosity parameter, such that the difference between the linearized Navier–Stokes solution and the proposed expansion vanishes as the viscosity tends to zero in L 2 ( Ω ) uniformly in time, and remains bounded independently of viscosity in the space L 2 ( [ 0 , T ] ; H 1 ( Ω ) ) . We make this construction both for a 3D channel domain and a smooth domain with a curved boundary. The zero-viscosity limit for LNSE, that is, the convergence of the LNSE solution to the solution of the linearized Euler equations around the same profile when viscosity vanishes, then naturally follows from the validity of this asymptotic expansion. This article generalizes and improves earlier works, such as Temam and Wang (Indiana Univ Math J 45(3):863–916, 1996 ), Xin and Yanagisawa (Commun Pure Appl Math 52(4):479–541, 1999 ), and Gie (Commun Math Sci 12(2):383–400, 2014 ).
doi_str_mv 10.1007/s00021-018-0371-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2133938703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133938703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a08a673a5c320631efb313d18e4ce632ebe181fecee8e450910eaa2a5408744c3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHaWWAdm7Pw4y1K1gBTBorBiYbnpBFJK3NoJqKy4AzfkJCQEwYrVjGbeezP6GDtGOEWA5MwDgMAAUAUgEwzUDhtgKEQQp5HY_e2F2mcH3i8BMIlSMWD357apFsZteWa25DwvrOP1I_Fr81KS-3z_mNX2iTyfbBpTl7byPCsrMq58owUfuc7NDZ_V38suZ9KsyPHpyr4esr3CrDwd_dQhu5tObseXQXZzcTUeZUEuo7QODCgTJ9JEuRQQS6RiLlEuUFGYUywFzQkVFpQTtaMIUgQyRpgoBJWEYS6H7KTPXTu7acjXemkbV7UntUApU6kSkK0Ke1XurPeOCr125XP7sUbQHUPdM9QtQ90x1Kr1iN7jW231QO4v-X_TF59fdRY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133938703</pqid></control><display><type>article</type><title>Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow</title><source>Springer Nature</source><creator>Gie, Gung-Min ; Kelliher, James P. ; Mazzucato, Anna L.</creator><creatorcontrib>Gie, Gung-Min ; Kelliher, James P. ; Mazzucato, Anna L.</creatorcontrib><description>We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier–Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain Ω ⊂ R 3 under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0,  T ], 0 &lt; T &lt; ∞ , obtained via an asymptotic expansion in the viscosity parameter, such that the difference between the linearized Navier–Stokes solution and the proposed expansion vanishes as the viscosity tends to zero in L 2 ( Ω ) uniformly in time, and remains bounded independently of viscosity in the space L 2 ( [ 0 , T ] ; H 1 ( Ω ) ) . We make this construction both for a 3D channel domain and a smooth domain with a curved boundary. The zero-viscosity limit for LNSE, that is, the convergence of the LNSE solution to the solution of the linearized Euler equations around the same profile when viscosity vanishes, then naturally follows from the validity of this asymptotic expansion. This article generalizes and improves earlier works, such as Temam and Wang (Indiana Univ Math J 45(3):863–916, 1996 ), Xin and Yanagisawa (Commun Pure Appl Math 52(4):479–541, 1999 ), and Gie (Commun Math Sci 12(2):383–400, 2014 ).</description><identifier>ISSN: 1422-6928</identifier><identifier>EISSN: 1422-6952</identifier><identifier>DOI: 10.1007/s00021-018-0371-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Asymptotic series ; Boundary conditions ; Boundary layers ; Classical and Continuum Physics ; Euler-Lagrange equation ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluid- and Aerodynamics ; Linearization ; Mathematical analysis ; Mathematical Methods in Physics ; Navier-Stokes equations ; Physics ; Physics and Astronomy ; Rigid walls ; Slip ; Theoretical mathematics ; Viscosity</subject><ispartof>Journal of mathematical fluid mechanics, 2018-12, Vol.20 (4), p.1405-1426</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a08a673a5c320631efb313d18e4ce632ebe181fecee8e450910eaa2a5408744c3</citedby><cites>FETCH-LOGICAL-c359t-a08a673a5c320631efb313d18e4ce632ebe181fecee8e450910eaa2a5408744c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Gie, Gung-Min</creatorcontrib><creatorcontrib>Kelliher, James P.</creatorcontrib><creatorcontrib>Mazzucato, Anna L.</creatorcontrib><title>Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow</title><title>Journal of mathematical fluid mechanics</title><addtitle>J. Math. Fluid Mech</addtitle><description>We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier–Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain Ω ⊂ R 3 under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0,  T ], 0 &lt; T &lt; ∞ , obtained via an asymptotic expansion in the viscosity parameter, such that the difference between the linearized Navier–Stokes solution and the proposed expansion vanishes as the viscosity tends to zero in L 2 ( Ω ) uniformly in time, and remains bounded independently of viscosity in the space L 2 ( [ 0 , T ] ; H 1 ( Ω ) ) . We make this construction both for a 3D channel domain and a smooth domain with a curved boundary. The zero-viscosity limit for LNSE, that is, the convergence of the LNSE solution to the solution of the linearized Euler equations around the same profile when viscosity vanishes, then naturally follows from the validity of this asymptotic expansion. This article generalizes and improves earlier works, such as Temam and Wang (Indiana Univ Math J 45(3):863–916, 1996 ), Xin and Yanagisawa (Commun Pure Appl Math 52(4):479–541, 1999 ), and Gie (Commun Math Sci 12(2):383–400, 2014 ).</description><subject>Asymptotic series</subject><subject>Boundary conditions</subject><subject>Boundary layers</subject><subject>Classical and Continuum Physics</subject><subject>Euler-Lagrange equation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rigid walls</subject><subject>Slip</subject><subject>Theoretical mathematics</subject><subject>Viscosity</subject><issn>1422-6928</issn><issn>1422-6952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqVwAHaWWAdm7Pw4y1K1gBTBorBiYbnpBFJK3NoJqKy4AzfkJCQEwYrVjGbeezP6GDtGOEWA5MwDgMAAUAUgEwzUDhtgKEQQp5HY_e2F2mcH3i8BMIlSMWD357apFsZteWa25DwvrOP1I_Fr81KS-3z_mNX2iTyfbBpTl7byPCsrMq58owUfuc7NDZ_V38suZ9KsyPHpyr4esr3CrDwd_dQhu5tObseXQXZzcTUeZUEuo7QODCgTJ9JEuRQQS6RiLlEuUFGYUywFzQkVFpQTtaMIUgQyRpgoBJWEYS6H7KTPXTu7acjXemkbV7UntUApU6kSkK0Ke1XurPeOCr125XP7sUbQHUPdM9QtQ90x1Kr1iN7jW231QO4v-X_TF59fdRY</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Gie, Gung-Min</creator><creator>Kelliher, James P.</creator><creator>Mazzucato, Anna L.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow</title><author>Gie, Gung-Min ; Kelliher, James P. ; Mazzucato, Anna L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a08a673a5c320631efb313d18e4ce632ebe181fecee8e450910eaa2a5408744c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic series</topic><topic>Boundary conditions</topic><topic>Boundary layers</topic><topic>Classical and Continuum Physics</topic><topic>Euler-Lagrange equation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rigid walls</topic><topic>Slip</topic><topic>Theoretical mathematics</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gie, Gung-Min</creatorcontrib><creatorcontrib>Kelliher, James P.</creatorcontrib><creatorcontrib>Mazzucato, Anna L.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gie, Gung-Min</au><au>Kelliher, James P.</au><au>Mazzucato, Anna L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow</atitle><jtitle>Journal of mathematical fluid mechanics</jtitle><stitle>J. Math. Fluid Mech</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>20</volume><issue>4</issue><spage>1405</spage><epage>1426</epage><pages>1405-1426</pages><issn>1422-6928</issn><eissn>1422-6952</eissn><abstract>We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier–Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain Ω ⊂ R 3 under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0,  T ], 0 &lt; T &lt; ∞ , obtained via an asymptotic expansion in the viscosity parameter, such that the difference between the linearized Navier–Stokes solution and the proposed expansion vanishes as the viscosity tends to zero in L 2 ( Ω ) uniformly in time, and remains bounded independently of viscosity in the space L 2 ( [ 0 , T ] ; H 1 ( Ω ) ) . We make this construction both for a 3D channel domain and a smooth domain with a curved boundary. The zero-viscosity limit for LNSE, that is, the convergence of the LNSE solution to the solution of the linearized Euler equations around the same profile when viscosity vanishes, then naturally follows from the validity of this asymptotic expansion. This article generalizes and improves earlier works, such as Temam and Wang (Indiana Univ Math J 45(3):863–916, 1996 ), Xin and Yanagisawa (Commun Pure Appl Math 52(4):479–541, 1999 ), and Gie (Commun Math Sci 12(2):383–400, 2014 ).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00021-018-0371-8</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-6928
ispartof Journal of mathematical fluid mechanics, 2018-12, Vol.20 (4), p.1405-1426
issn 1422-6928
1422-6952
language eng
recordid cdi_proquest_journals_2133938703
source Springer Nature
subjects Asymptotic series
Boundary conditions
Boundary layers
Classical and Continuum Physics
Euler-Lagrange equation
Fluid dynamics
Fluid flow
Fluid mechanics
Fluid- and Aerodynamics
Linearization
Mathematical analysis
Mathematical Methods in Physics
Navier-Stokes equations
Physics
Physics and Astronomy
Rigid walls
Slip
Theoretical mathematics
Viscosity
title Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20Layers%20for%20the%20Navier%E2%80%93Stokes%20Equations%20Linearized%20Around%20a%20Stationary%20Euler%20Flow&rft.jtitle=Journal%20of%20mathematical%20fluid%20mechanics&rft.au=Gie,%20Gung-Min&rft.date=2018-12-01&rft.volume=20&rft.issue=4&rft.spage=1405&rft.epage=1426&rft.pages=1405-1426&rft.issn=1422-6928&rft.eissn=1422-6952&rft_id=info:doi/10.1007/s00021-018-0371-8&rft_dat=%3Cproquest_cross%3E2133938703%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-a08a673a5c320631efb313d18e4ce632ebe181fecee8e450910eaa2a5408744c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2133938703&rft_id=info:pmid/&rfr_iscdi=true