Loading…

Transform Methods for Heavy-Traffic Analysis

The drift method was recently developed to study queueing systems in steady-state. It was successfully used to obtain bounds on the moments of the scaled queue lengths, that are asymptotically tight in heavy-traffic, in a wide variety of systems including generalized switches, input-queued switches,...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-03
Main Authors: Hurtado-Lange, Daniela, Maguluri, Siva Theja
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hurtado-Lange, Daniela
Maguluri, Siva Theja
description The drift method was recently developed to study queueing systems in steady-state. It was successfully used to obtain bounds on the moments of the scaled queue lengths, that are asymptotically tight in heavy-traffic, in a wide variety of systems including generalized switches, input-queued switches, bandwidth sharing networks, etc. In this paper we develop the use of transform techniques for heavy-traffic analysis, with a special focus on the use of moment generating functions. This approach simplifies the proofs of the drift method, and provides a new perspective on the drift method. We present a general framework and then use the MGF method to obtain the stationary distribution of queue lengths in heavy-traffic in queueing systems that satisfy the Complete Resource Pooling condition. In particular, we study load balancing systems and generalized switches under general settings.
doi_str_mv 10.48550/arxiv.1811.05595
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2134098086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2134098086</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-db0df76159b53f934ecb90ac0b0c186968f85c415c462841d78a25c485cb913</originalsourceid><addsrcrecordid>eNotjkFLAzEUhIMgWGp_gLcFr2Z9L8nLJsdS1AoVQXovSTbBLbWrSVvsvzdgD8PwzcAwjN0htMoQwaPLv8OpRYPYApGlKzYRUiI3SogbNitlCwBCd4JITtjDOrt9SWP-at7i4XPsS1OhWUZ3OvPapTSEZr53u3MZyi27Tm5X4uziU_bx_LReLPnq_eV1MV9xR0Lz3kOfOo1kPclkpYrBW3ABPAQ02mqTDAWFVVoYhX1nnKhQQ29RTtn9_-h3Hn-OsRw22_GY64OyESgVWANGyz8kmkIf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2134098086</pqid></control><display><type>article</type><title>Transform Methods for Heavy-Traffic Analysis</title><source>Publicly Available Content Database</source><creator>Hurtado-Lange, Daniela ; Maguluri, Siva Theja</creator><creatorcontrib>Hurtado-Lange, Daniela ; Maguluri, Siva Theja</creatorcontrib><description>The drift method was recently developed to study queueing systems in steady-state. It was successfully used to obtain bounds on the moments of the scaled queue lengths, that are asymptotically tight in heavy-traffic, in a wide variety of systems including generalized switches, input-queued switches, bandwidth sharing networks, etc. In this paper we develop the use of transform techniques for heavy-traffic analysis, with a special focus on the use of moment generating functions. This approach simplifies the proofs of the drift method, and provides a new perspective on the drift method. We present a general framework and then use the MGF method to obtain the stationary distribution of queue lengths in heavy-traffic in queueing systems that satisfy the Complete Resource Pooling condition. In particular, we study load balancing systems and generalized switches under general settings.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1811.05595</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ad hoc networks ; Drift ; Markov analysis ; Queues ; Queuing theory ; Switches ; Switching theory ; Wireless networks</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2134098086?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Hurtado-Lange, Daniela</creatorcontrib><creatorcontrib>Maguluri, Siva Theja</creatorcontrib><title>Transform Methods for Heavy-Traffic Analysis</title><title>arXiv.org</title><description>The drift method was recently developed to study queueing systems in steady-state. It was successfully used to obtain bounds on the moments of the scaled queue lengths, that are asymptotically tight in heavy-traffic, in a wide variety of systems including generalized switches, input-queued switches, bandwidth sharing networks, etc. In this paper we develop the use of transform techniques for heavy-traffic analysis, with a special focus on the use of moment generating functions. This approach simplifies the proofs of the drift method, and provides a new perspective on the drift method. We present a general framework and then use the MGF method to obtain the stationary distribution of queue lengths in heavy-traffic in queueing systems that satisfy the Complete Resource Pooling condition. In particular, we study load balancing systems and generalized switches under general settings.</description><subject>Ad hoc networks</subject><subject>Drift</subject><subject>Markov analysis</subject><subject>Queues</subject><subject>Queuing theory</subject><subject>Switches</subject><subject>Switching theory</subject><subject>Wireless networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjkFLAzEUhIMgWGp_gLcFr2Z9L8nLJsdS1AoVQXovSTbBLbWrSVvsvzdgD8PwzcAwjN0htMoQwaPLv8OpRYPYApGlKzYRUiI3SogbNitlCwBCd4JITtjDOrt9SWP-at7i4XPsS1OhWUZ3OvPapTSEZr53u3MZyi27Tm5X4uziU_bx_LReLPnq_eV1MV9xR0Lz3kOfOo1kPclkpYrBW3ABPAQ02mqTDAWFVVoYhX1nnKhQQ29RTtn9_-h3Hn-OsRw22_GY64OyESgVWANGyz8kmkIf</recordid><startdate>20200328</startdate><enddate>20200328</enddate><creator>Hurtado-Lange, Daniela</creator><creator>Maguluri, Siva Theja</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200328</creationdate><title>Transform Methods for Heavy-Traffic Analysis</title><author>Hurtado-Lange, Daniela ; Maguluri, Siva Theja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-db0df76159b53f934ecb90ac0b0c186968f85c415c462841d78a25c485cb913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ad hoc networks</topic><topic>Drift</topic><topic>Markov analysis</topic><topic>Queues</topic><topic>Queuing theory</topic><topic>Switches</topic><topic>Switching theory</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Hurtado-Lange, Daniela</creatorcontrib><creatorcontrib>Maguluri, Siva Theja</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurtado-Lange, Daniela</au><au>Maguluri, Siva Theja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transform Methods for Heavy-Traffic Analysis</atitle><jtitle>arXiv.org</jtitle><date>2020-03-28</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The drift method was recently developed to study queueing systems in steady-state. It was successfully used to obtain bounds on the moments of the scaled queue lengths, that are asymptotically tight in heavy-traffic, in a wide variety of systems including generalized switches, input-queued switches, bandwidth sharing networks, etc. In this paper we develop the use of transform techniques for heavy-traffic analysis, with a special focus on the use of moment generating functions. This approach simplifies the proofs of the drift method, and provides a new perspective on the drift method. We present a general framework and then use the MGF method to obtain the stationary distribution of queue lengths in heavy-traffic in queueing systems that satisfy the Complete Resource Pooling condition. In particular, we study load balancing systems and generalized switches under general settings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1811.05595</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2134098086
source Publicly Available Content Database
subjects Ad hoc networks
Drift
Markov analysis
Queues
Queuing theory
Switches
Switching theory
Wireless networks
title Transform Methods for Heavy-Traffic Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transform%20Methods%20for%20Heavy-Traffic%20Analysis&rft.jtitle=arXiv.org&rft.au=Hurtado-Lange,%20Daniela&rft.date=2020-03-28&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1811.05595&rft_dat=%3Cproquest%3E2134098086%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-db0df76159b53f934ecb90ac0b0c186968f85c415c462841d78a25c485cb913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2134098086&rft_id=info:pmid/&rfr_iscdi=true