Loading…

Development and application of fast methods for computing momentum transfer between gas and dust in supercomputer simulation of planet formation

Circumstellar discs, from which planetary systems are formed, consist of gas, dust and solids. Simulations of self-consistent dynamics of gas, dust and solids in circumstellar discs is a challenging problem. In the paper we present fast algorithms for computing the drag force (momentum transfer) bet...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-11
Main Authors: Stoyanovskaya, Olga P, Akimkin, Vitaly V, Vorobyov, Eduard I, Glushko, Tatiana A, Pavlyuchenkov, Yaroslav N, Snytnikov, Valeriy N, Snytnikov, Nikolay V
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Circumstellar discs, from which planetary systems are formed, consist of gas, dust and solids. Simulations of self-consistent dynamics of gas, dust and solids in circumstellar discs is a challenging problem. In the paper we present fast algorithms for computing the drag force (momentum transfer) between solid phase and gas. These algorithms (a) are universal and applicable to dust and solids with any sizes smaller than the mean free path of gas molecules, (b) can be used to calculate the momentum transfer between dust and gas instead of one-way effect, as it is done in many models, (c) can perform simulations, without a loss in accuracy, with the time step determined by gas-dynamic parameters rather than by drag force, and (d) are compatible with the widely used parallel algorithms for solving 3D equations of gas dynamics, hydrodynamic equations for dust, and the collisionless Boltzmann equation for large bodies. Preliminary results of supercomputer simulation of the gas-dust disc dynamics within the developed approach are reported.
ISSN:2331-8422
DOI:10.48550/arxiv.1811.06522