Loading…
Effect of temperature on zooplankton vertical migration velocity
Zooplankton diel vertical migration (DVM) is an ecologically important process, affecting nutrient transport and trophic interactions. Available measurements of zooplankton displacement velocity during the DVM in the field are rare; therefore, it is not known which factors are key in driving this ve...
Saved in:
Published in: | Hydrobiologia 2019-02, Vol.829 (1), p.143-166 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c432t-192a6aea79de8f77c66a571f3ab671cb1436ccb413f0ddc8b259194cb0e2e5a53 |
---|---|
cites | cdi_FETCH-LOGICAL-c432t-192a6aea79de8f77c66a571f3ab671cb1436ccb413f0ddc8b259194cb0e2e5a53 |
container_end_page | 166 |
container_issue | 1 |
container_start_page | 143 |
container_title | Hydrobiologia |
container_volume | 829 |
creator | Simoncelli, Stefano Thackeray, Stephen J. Wain, Danielle J. |
description | Zooplankton diel vertical migration (DVM) is an ecologically important process, affecting nutrient transport and trophic interactions. Available measurements of zooplankton displacement velocity during the DVM in the field are rare; therefore, it is not known which factors are key in driving this velocity. We measured the velocity of the migrating layer at sunset (upward bulk velocity) and sunrise (downwards velocity) in summer 2015 and 2016 in a lake using the backscatter strength (VBS) from an acoustic Doppler current profiler. We collected time series of temperature, relative change in light intensity chlorophyll-
a
concentration and zooplankton concentration. Our data show that upward velocities increased during the summer and were not enhanced by food, light intensity or by VBS, which is a proxy for zooplankton concentration and size. Upward velocities were strongly correlated with the water temperature in the migrating layer, suggesting that temperature could be a key factor controlling swimming activity. Downward velocities were constant, likely because
Daphnia
passively sink at sunrise, as suggested by our model of
Daphnia
sinking rate. Zooplankton migrations mediate trophic interactions and web food structure in pelagic ecosystems. An understanding of the potential environmental determinants of this behaviour is therefore essential to our knowledge of ecosystem functioning. |
doi_str_mv | 10.1007/s10750-018-3827-1 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2134984421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A569007334</galeid><sourcerecordid>A569007334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-192a6aea79de8f77c66a571f3ab671cb1436ccb413f0ddc8b259194cb0e2e5a53</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoWKs_wNuCJw9bM5vNZvdmKVULBcGPc8imk7J1u6lJKtZfb-oK0oPMYYbJ806GeQm5BDoCSsWNByo4TSmUKSszkcIRGQAXLOUA4pgM6P6lBF6ekjPvVzRqqowOyO3UGNQhsSYJuN6gU2HrMLFd8mXtplXdW4j1B7rQaNUm62YZiean1VrdhN05OTGq9Xjxm4fk9W76MnlI54_3s8l4nuqcZSGFKlOFQiWqBZZGCF0UigswTNWFAF1Dzgqt6xyYoYuFLuuMV1DluqaYIVecDclVP3fj7PsWfZAru3Vd_FJmwPKqzPOYh2TUU0vVomw6Y4NTOsYC1422HZom9se8qOIBGMuj4PpAEJmAn2Gptt7L2fPTIQs9q5313qGRG9esldtJoHLvguxdkPHWcu-C3C-U9Rof2W6J7m_t_0XfT1qJKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2134984421</pqid></control><display><type>article</type><title>Effect of temperature on zooplankton vertical migration velocity</title><source>Springer Nature</source><creator>Simoncelli, Stefano ; Thackeray, Stephen J. ; Wain, Danielle J.</creator><creatorcontrib>Simoncelli, Stefano ; Thackeray, Stephen J. ; Wain, Danielle J.</creatorcontrib><description>Zooplankton diel vertical migration (DVM) is an ecologically important process, affecting nutrient transport and trophic interactions. Available measurements of zooplankton displacement velocity during the DVM in the field are rare; therefore, it is not known which factors are key in driving this velocity. We measured the velocity of the migrating layer at sunset (upward bulk velocity) and sunrise (downwards velocity) in summer 2015 and 2016 in a lake using the backscatter strength (VBS) from an acoustic Doppler current profiler. We collected time series of temperature, relative change in light intensity chlorophyll-
a
concentration and zooplankton concentration. Our data show that upward velocities increased during the summer and were not enhanced by food, light intensity or by VBS, which is a proxy for zooplankton concentration and size. Upward velocities were strongly correlated with the water temperature in the migrating layer, suggesting that temperature could be a key factor controlling swimming activity. Downward velocities were constant, likely because
Daphnia
passively sink at sunrise, as suggested by our model of
Daphnia
sinking rate. Zooplankton migrations mediate trophic interactions and web food structure in pelagic ecosystems. An understanding of the potential environmental determinants of this behaviour is therefore essential to our knowledge of ecosystem functioning.</description><identifier>ISSN: 0018-8158</identifier><identifier>EISSN: 1573-5117</identifier><identifier>DOI: 10.1007/s10750-018-3827-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Backscattering ; Biomedical and Life Sciences ; Chlorophyll ; Chlorophyll a ; Daphnia ; Doppler sonar ; Ecological function ; Ecological monitoring ; Ecology ; Ecosystems ; Food ; Food webs ; Foods ; Freshwater & Marine Ecology ; Freshwater crustaceans ; Interactions ; Lakes ; Life Sciences ; Light intensity ; Luminous intensity ; Mineral nutrients ; Nutrient transport ; Plankton ; Primary Research Paper ; Summer ; Sunrise ; Sunset ; Swimming ; Temperature effects ; Trophic relationships ; Velocity ; Vertical migration ; Water temperature ; Zoology ; Zooplankton</subject><ispartof>Hydrobiologia, 2019-02, Vol.829 (1), p.143-166</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Hydrobiologia is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-192a6aea79de8f77c66a571f3ab671cb1436ccb413f0ddc8b259194cb0e2e5a53</citedby><cites>FETCH-LOGICAL-c432t-192a6aea79de8f77c66a571f3ab671cb1436ccb413f0ddc8b259194cb0e2e5a53</cites><orcidid>0000-0002-8795-3407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Simoncelli, Stefano</creatorcontrib><creatorcontrib>Thackeray, Stephen J.</creatorcontrib><creatorcontrib>Wain, Danielle J.</creatorcontrib><title>Effect of temperature on zooplankton vertical migration velocity</title><title>Hydrobiologia</title><addtitle>Hydrobiologia</addtitle><description>Zooplankton diel vertical migration (DVM) is an ecologically important process, affecting nutrient transport and trophic interactions. Available measurements of zooplankton displacement velocity during the DVM in the field are rare; therefore, it is not known which factors are key in driving this velocity. We measured the velocity of the migrating layer at sunset (upward bulk velocity) and sunrise (downwards velocity) in summer 2015 and 2016 in a lake using the backscatter strength (VBS) from an acoustic Doppler current profiler. We collected time series of temperature, relative change in light intensity chlorophyll-
a
concentration and zooplankton concentration. Our data show that upward velocities increased during the summer and were not enhanced by food, light intensity or by VBS, which is a proxy for zooplankton concentration and size. Upward velocities were strongly correlated with the water temperature in the migrating layer, suggesting that temperature could be a key factor controlling swimming activity. Downward velocities were constant, likely because
Daphnia
passively sink at sunrise, as suggested by our model of
Daphnia
sinking rate. Zooplankton migrations mediate trophic interactions and web food structure in pelagic ecosystems. An understanding of the potential environmental determinants of this behaviour is therefore essential to our knowledge of ecosystem functioning.</description><subject>Backscattering</subject><subject>Biomedical and Life Sciences</subject><subject>Chlorophyll</subject><subject>Chlorophyll a</subject><subject>Daphnia</subject><subject>Doppler sonar</subject><subject>Ecological function</subject><subject>Ecological monitoring</subject><subject>Ecology</subject><subject>Ecosystems</subject><subject>Food</subject><subject>Food webs</subject><subject>Foods</subject><subject>Freshwater & Marine Ecology</subject><subject>Freshwater crustaceans</subject><subject>Interactions</subject><subject>Lakes</subject><subject>Life Sciences</subject><subject>Light intensity</subject><subject>Luminous intensity</subject><subject>Mineral nutrients</subject><subject>Nutrient transport</subject><subject>Plankton</subject><subject>Primary Research Paper</subject><subject>Summer</subject><subject>Sunrise</subject><subject>Sunset</subject><subject>Swimming</subject><subject>Temperature effects</subject><subject>Trophic relationships</subject><subject>Velocity</subject><subject>Vertical migration</subject><subject>Water temperature</subject><subject>Zoology</subject><subject>Zooplankton</subject><issn>0018-8158</issn><issn>1573-5117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LAzEQhoMoWKs_wNuCJw9bM5vNZvdmKVULBcGPc8imk7J1u6lJKtZfb-oK0oPMYYbJ806GeQm5BDoCSsWNByo4TSmUKSszkcIRGQAXLOUA4pgM6P6lBF6ekjPvVzRqqowOyO3UGNQhsSYJuN6gU2HrMLFd8mXtplXdW4j1B7rQaNUm62YZiean1VrdhN05OTGq9Xjxm4fk9W76MnlI54_3s8l4nuqcZSGFKlOFQiWqBZZGCF0UigswTNWFAF1Dzgqt6xyYoYuFLuuMV1DluqaYIVecDclVP3fj7PsWfZAru3Vd_FJmwPKqzPOYh2TUU0vVomw6Y4NTOsYC1422HZom9se8qOIBGMuj4PpAEJmAn2Gptt7L2fPTIQs9q5313qGRG9esldtJoHLvguxdkPHWcu-C3C-U9Rof2W6J7m_t_0XfT1qJKQ</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Simoncelli, Stefano</creator><creator>Thackeray, Stephen J.</creator><creator>Wain, Danielle J.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-8795-3407</orcidid></search><sort><creationdate>20190201</creationdate><title>Effect of temperature on zooplankton vertical migration velocity</title><author>Simoncelli, Stefano ; Thackeray, Stephen J. ; Wain, Danielle J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-192a6aea79de8f77c66a571f3ab671cb1436ccb413f0ddc8b259194cb0e2e5a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Backscattering</topic><topic>Biomedical and Life Sciences</topic><topic>Chlorophyll</topic><topic>Chlorophyll a</topic><topic>Daphnia</topic><topic>Doppler sonar</topic><topic>Ecological function</topic><topic>Ecological monitoring</topic><topic>Ecology</topic><topic>Ecosystems</topic><topic>Food</topic><topic>Food webs</topic><topic>Foods</topic><topic>Freshwater & Marine Ecology</topic><topic>Freshwater crustaceans</topic><topic>Interactions</topic><topic>Lakes</topic><topic>Life Sciences</topic><topic>Light intensity</topic><topic>Luminous intensity</topic><topic>Mineral nutrients</topic><topic>Nutrient transport</topic><topic>Plankton</topic><topic>Primary Research Paper</topic><topic>Summer</topic><topic>Sunrise</topic><topic>Sunset</topic><topic>Swimming</topic><topic>Temperature effects</topic><topic>Trophic relationships</topic><topic>Velocity</topic><topic>Vertical migration</topic><topic>Water temperature</topic><topic>Zoology</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simoncelli, Stefano</creatorcontrib><creatorcontrib>Thackeray, Stephen J.</creatorcontrib><creatorcontrib>Wain, Danielle J.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biological Sciences</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Hydrobiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simoncelli, Stefano</au><au>Thackeray, Stephen J.</au><au>Wain, Danielle J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of temperature on zooplankton vertical migration velocity</atitle><jtitle>Hydrobiologia</jtitle><stitle>Hydrobiologia</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>829</volume><issue>1</issue><spage>143</spage><epage>166</epage><pages>143-166</pages><issn>0018-8158</issn><eissn>1573-5117</eissn><abstract>Zooplankton diel vertical migration (DVM) is an ecologically important process, affecting nutrient transport and trophic interactions. Available measurements of zooplankton displacement velocity during the DVM in the field are rare; therefore, it is not known which factors are key in driving this velocity. We measured the velocity of the migrating layer at sunset (upward bulk velocity) and sunrise (downwards velocity) in summer 2015 and 2016 in a lake using the backscatter strength (VBS) from an acoustic Doppler current profiler. We collected time series of temperature, relative change in light intensity chlorophyll-
a
concentration and zooplankton concentration. Our data show that upward velocities increased during the summer and were not enhanced by food, light intensity or by VBS, which is a proxy for zooplankton concentration and size. Upward velocities were strongly correlated with the water temperature in the migrating layer, suggesting that temperature could be a key factor controlling swimming activity. Downward velocities were constant, likely because
Daphnia
passively sink at sunrise, as suggested by our model of
Daphnia
sinking rate. Zooplankton migrations mediate trophic interactions and web food structure in pelagic ecosystems. An understanding of the potential environmental determinants of this behaviour is therefore essential to our knowledge of ecosystem functioning.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10750-018-3827-1</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-8795-3407</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-8158 |
ispartof | Hydrobiologia, 2019-02, Vol.829 (1), p.143-166 |
issn | 0018-8158 1573-5117 |
language | eng |
recordid | cdi_proquest_journals_2134984421 |
source | Springer Nature |
subjects | Backscattering Biomedical and Life Sciences Chlorophyll Chlorophyll a Daphnia Doppler sonar Ecological function Ecological monitoring Ecology Ecosystems Food Food webs Foods Freshwater & Marine Ecology Freshwater crustaceans Interactions Lakes Life Sciences Light intensity Luminous intensity Mineral nutrients Nutrient transport Plankton Primary Research Paper Summer Sunrise Sunset Swimming Temperature effects Trophic relationships Velocity Vertical migration Water temperature Zoology Zooplankton |
title | Effect of temperature on zooplankton vertical migration velocity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20temperature%20on%20zooplankton%20vertical%20migration%20velocity&rft.jtitle=Hydrobiologia&rft.au=Simoncelli,%20Stefano&rft.date=2019-02-01&rft.volume=829&rft.issue=1&rft.spage=143&rft.epage=166&rft.pages=143-166&rft.issn=0018-8158&rft.eissn=1573-5117&rft_id=info:doi/10.1007/s10750-018-3827-1&rft_dat=%3Cgale_proqu%3EA569007334%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-192a6aea79de8f77c66a571f3ab671cb1436ccb413f0ddc8b259194cb0e2e5a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2134984421&rft_id=info:pmid/&rft_galeid=A569007334&rfr_iscdi=true |