Loading…
Concrete-ice abrasion: Wear, coefficient of friction and ice consumption
Concrete structures in the Arctic offshore are often exposed to drifting ice causing abrasion of concrete surfaces. This paper presents the results of a laboratory study of concrete-ice abrasion. The sawn concrete surfaces (two high-performance concrete mixes and one light weight mix of concrete) we...
Saved in:
Published in: | Wear 2018-12, Vol.416-417, p.27-35 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Concrete structures in the Arctic offshore are often exposed to drifting ice causing abrasion of concrete surfaces. This paper presents the results of a laboratory study of concrete-ice abrasion. The sawn concrete surfaces (two high-performance concrete mixes and one light weight mix of concrete) were exposed to sliding fresh-water ice under 1 MPa pressure for 3 km of sliding distance. The effect of concrete compressive strength, ice consumption, and the coefficient of friction on abrasion was studied simultaneously. The results show a low abrasion of concrete, the maximum abrasion depth (0.35 mm) after 3 km of sliding test was found for the concrete samples with the lowest compressive strength. All tests showed a severe-to-mild wear transition, with the maximum wear rate in the first sliding kilometre. The coefficient of friction was high when ice consumption was high due to ice spallation and pulverization, whereas the coefficient of friction was not directly correlated to the wear. The wear or consumption of the ice (abrasive) was in the order of 30,000–100,000 times that of concrete despite of its strength and stiffness 1–10 times lower than that of concrete.
•Simultaneous measurements of concrete wear, ice consumption and friction were made.•The observed abrasion was very low: maximum 0.35 mm after 3 km.•Severe-to-mild wear transition of concrete-ice abrasion was observed.•Ice spallation increases ice consumption and coefficient of friction. |
---|---|
ISSN: | 0043-1648 1873-2577 |
DOI: | 10.1016/j.wear.2018.09.007 |