Loading…
Ghost Imaging at an XUV Free-Electron Laser
Radiation damage is one of the most severe resolution limiting factors in x-ray imaging, especially relevant to biological samples. One way of circumventing this problem is to exploit correlation-based methods developed in quantum imaging. Among these, there is ghost imaging (GI) in which the image...
Saved in:
Published in: | arXiv.org 2018-11 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Radiation damage is one of the most severe resolution limiting factors in x-ray imaging, especially relevant to biological samples. One way of circumventing this problem is to exploit correlation-based methods developed in quantum imaging. Among these, there is ghost imaging (GI) in which the image is formed by radiation that has never interacted with the sample. Here, we demonstrate GI at an XUV free-electron laser by utilizing correlation techniques. We discuss the experimental challenges, optimal setup, and crucial ingredients to maximize the achievable resolution. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1811.06855 |