Loading…

Experimental investigation on the Leidenfrost phenomenon of droplet impact on heated silicon carbide surfaces

•Impact regime map of droplet impacting on heated silicon carbide surface is developed.•Droplet spreading dynamics and residence time during Leidenfrost state is analyzed.•Influence of surface roughness, wettability and surface material on the impact behaviors is analyzed.•Existing Leidenfrost tempe...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2019-01, Vol.128, p.1206-1217
Main Authors: Wang, ZeFeng, Xiong, Jinbiao, Yao, Weiyi, Qu, Wenhai, Yang, Yanhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-b70c06b3d9269b3fb7b98f20fe31c099eaf49c49e39d8cd2fa213615ca1cf15d3
cites cdi_FETCH-LOGICAL-c370t-b70c06b3d9269b3fb7b98f20fe31c099eaf49c49e39d8cd2fa213615ca1cf15d3
container_end_page 1217
container_issue
container_start_page 1206
container_title International journal of heat and mass transfer
container_volume 128
creator Wang, ZeFeng
Xiong, Jinbiao
Yao, Weiyi
Qu, Wenhai
Yang, Yanhua
description •Impact regime map of droplet impacting on heated silicon carbide surface is developed.•Droplet spreading dynamics and residence time during Leidenfrost state is analyzed.•Influence of surface roughness, wettability and surface material on the impact behaviors is analyzed.•Existing Leidenfrost temperature models are evaluated. Due to its superiority in suppressing hydrogen generation under severe accident conditions, silicon carbide (SiC) has been regarded as one of the promising candidates among the diverse accident tolerant fuel (ATF) claddings. Droplet impact experiments are conducted on preheated CVD-SiC surfaces with different roughness and the polished sintered-SiC and stainless-steel surface. The effects of surface roughness, contact angle and thermal properties on the impact behavior and cooling efficiency are discussed. The experiments are carried out in the range of 10 
doi_str_mv 10.1016/j.ijheatmasstransfer.2018.09.091
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2135602781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001793101830379X</els_id><sourcerecordid>2135602781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-b70c06b3d9269b3fb7b98f20fe31c099eaf49c49e39d8cd2fa213615ca1cf15d3</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoWKv_IeDGzdTcSTsz2Smlvii40XXIJDc2w7xM0qL_3gx150Y4EC73y0nOIeQG2AIYFLfNwjU7VLFTIUSv-mDRL3IG1YKJJDghM6hKkeVQiVMyYwzKTHBg5-QihGYa2bKYkW7zNaJ3HfZRtdT1BwzRfajohp4mxR3SLTqDvfVDiHTcYT8keNpaavwwthip60al48RPP0JDg2udTqNWvk6Xadh7qzSGS3JmVRvw6veck_eHzdv6Kdu-Pj6v77eZ5iWLWV0yzYqaG5EXoua2LmtR2ZxZ5KCZEKjsUuilQC5MpU1uVQ68gJVWoC2sDJ-T66Pv6IfPfYokm2Hv-_SkTOSqYHlZQaLujpRO2YJHK8fUhPLfEpicSpaN_FuynEqWTCRNFi9HC0xpDi5tg3bYazTOo47SDO7_Zj9Pk5VU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135602781</pqid></control><display><type>article</type><title>Experimental investigation on the Leidenfrost phenomenon of droplet impact on heated silicon carbide surfaces</title><source>ScienceDirect Journals</source><creator>Wang, ZeFeng ; Xiong, Jinbiao ; Yao, Weiyi ; Qu, Wenhai ; Yang, Yanhua</creator><creatorcontrib>Wang, ZeFeng ; Xiong, Jinbiao ; Yao, Weiyi ; Qu, Wenhai ; Yang, Yanhua</creatorcontrib><description>•Impact regime map of droplet impacting on heated silicon carbide surface is developed.•Droplet spreading dynamics and residence time during Leidenfrost state is analyzed.•Influence of surface roughness, wettability and surface material on the impact behaviors is analyzed.•Existing Leidenfrost temperature models are evaluated. Due to its superiority in suppressing hydrogen generation under severe accident conditions, silicon carbide (SiC) has been regarded as one of the promising candidates among the diverse accident tolerant fuel (ATF) claddings. Droplet impact experiments are conducted on preheated CVD-SiC surfaces with different roughness and the polished sintered-SiC and stainless-steel surface. The effects of surface roughness, contact angle and thermal properties on the impact behavior and cooling efficiency are discussed. The experiments are carried out in the range of 10 &lt; We &lt; 120 and Tsurf &lt; 460 °C. The observed droplet impact phenomena on all the surfaces are categorized into five regimes, i.e. deposition, rebound with secondary atomization, breakup with secondary atomization, rebound and breakup. Deposition corresponds to nucleate boiling. Rebound and breakup are the hydrodynamic phenomena of film boiling. The rest two correspond to transition boiling. Droplet breakup can be induced thermally or mechanically in the transition boiling. Surface roughness can enhance droplet breakup both in the film and transition boiling. The small contact angle also promotes breakup. The thermal property of surfaces has little effect on the critical Weber number for droplet breakup, but affect the Leidenfrost point temperature (LPT) and CHF temperature significantly. The rupture of liquid film induced by roughness reduces the stagnant pressure beneath the droplet and lower the LPT. The droplet spreading dynamics are analyzed quantitatively, and developed an empirical model for droplet maximum spreading factor. It is found that the LPT model based on homogeneous nucleation mechanism coincides well with present experimental results.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2018.09.091</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Accident conditions ; Atomizing ; Breakup ; Claddings ; Contact angle ; Deposition ; Droplets ; Empirical analysis ; Film boiling ; Heat transfer ; Hydrogen production ; Leidenfrost phenomenon ; Nuclear accidents &amp; safety ; Nucleate boiling ; Nucleation ; Oxidation ; Silicon carbide ; Spreading ; Surface roughness ; Surface roughness effects ; Thermodynamic properties ; Weber number</subject><ispartof>International journal of heat and mass transfer, 2019-01, Vol.128, p.1206-1217</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-b70c06b3d9269b3fb7b98f20fe31c099eaf49c49e39d8cd2fa213615ca1cf15d3</citedby><cites>FETCH-LOGICAL-c370t-b70c06b3d9269b3fb7b98f20fe31c099eaf49c49e39d8cd2fa213615ca1cf15d3</cites><orcidid>0000-0003-4459-4296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, ZeFeng</creatorcontrib><creatorcontrib>Xiong, Jinbiao</creatorcontrib><creatorcontrib>Yao, Weiyi</creatorcontrib><creatorcontrib>Qu, Wenhai</creatorcontrib><creatorcontrib>Yang, Yanhua</creatorcontrib><title>Experimental investigation on the Leidenfrost phenomenon of droplet impact on heated silicon carbide surfaces</title><title>International journal of heat and mass transfer</title><description>•Impact regime map of droplet impacting on heated silicon carbide surface is developed.•Droplet spreading dynamics and residence time during Leidenfrost state is analyzed.•Influence of surface roughness, wettability and surface material on the impact behaviors is analyzed.•Existing Leidenfrost temperature models are evaluated. Due to its superiority in suppressing hydrogen generation under severe accident conditions, silicon carbide (SiC) has been regarded as one of the promising candidates among the diverse accident tolerant fuel (ATF) claddings. Droplet impact experiments are conducted on preheated CVD-SiC surfaces with different roughness and the polished sintered-SiC and stainless-steel surface. The effects of surface roughness, contact angle and thermal properties on the impact behavior and cooling efficiency are discussed. The experiments are carried out in the range of 10 &lt; We &lt; 120 and Tsurf &lt; 460 °C. The observed droplet impact phenomena on all the surfaces are categorized into five regimes, i.e. deposition, rebound with secondary atomization, breakup with secondary atomization, rebound and breakup. Deposition corresponds to nucleate boiling. Rebound and breakup are the hydrodynamic phenomena of film boiling. The rest two correspond to transition boiling. Droplet breakup can be induced thermally or mechanically in the transition boiling. Surface roughness can enhance droplet breakup both in the film and transition boiling. The small contact angle also promotes breakup. The thermal property of surfaces has little effect on the critical Weber number for droplet breakup, but affect the Leidenfrost point temperature (LPT) and CHF temperature significantly. The rupture of liquid film induced by roughness reduces the stagnant pressure beneath the droplet and lower the LPT. The droplet spreading dynamics are analyzed quantitatively, and developed an empirical model for droplet maximum spreading factor. It is found that the LPT model based on homogeneous nucleation mechanism coincides well with present experimental results.</description><subject>Accident conditions</subject><subject>Atomizing</subject><subject>Breakup</subject><subject>Claddings</subject><subject>Contact angle</subject><subject>Deposition</subject><subject>Droplets</subject><subject>Empirical analysis</subject><subject>Film boiling</subject><subject>Heat transfer</subject><subject>Hydrogen production</subject><subject>Leidenfrost phenomenon</subject><subject>Nuclear accidents &amp; safety</subject><subject>Nucleate boiling</subject><subject>Nucleation</subject><subject>Oxidation</subject><subject>Silicon carbide</subject><subject>Spreading</subject><subject>Surface roughness</subject><subject>Surface roughness effects</subject><subject>Thermodynamic properties</subject><subject>Weber number</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEUhYMoWKv_IeDGzdTcSTsz2Smlvii40XXIJDc2w7xM0qL_3gx150Y4EC73y0nOIeQG2AIYFLfNwjU7VLFTIUSv-mDRL3IG1YKJJDghM6hKkeVQiVMyYwzKTHBg5-QihGYa2bKYkW7zNaJ3HfZRtdT1BwzRfajohp4mxR3SLTqDvfVDiHTcYT8keNpaavwwthip60al48RPP0JDg2udTqNWvk6Xadh7qzSGS3JmVRvw6veck_eHzdv6Kdu-Pj6v77eZ5iWLWV0yzYqaG5EXoua2LmtR2ZxZ5KCZEKjsUuilQC5MpU1uVQ68gJVWoC2sDJ-T66Pv6IfPfYokm2Hv-_SkTOSqYHlZQaLujpRO2YJHK8fUhPLfEpicSpaN_FuynEqWTCRNFi9HC0xpDi5tg3bYazTOo47SDO7_Zj9Pk5VU</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Wang, ZeFeng</creator><creator>Xiong, Jinbiao</creator><creator>Yao, Weiyi</creator><creator>Qu, Wenhai</creator><creator>Yang, Yanhua</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4459-4296</orcidid></search><sort><creationdate>201901</creationdate><title>Experimental investigation on the Leidenfrost phenomenon of droplet impact on heated silicon carbide surfaces</title><author>Wang, ZeFeng ; Xiong, Jinbiao ; Yao, Weiyi ; Qu, Wenhai ; Yang, Yanhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-b70c06b3d9269b3fb7b98f20fe31c099eaf49c49e39d8cd2fa213615ca1cf15d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accident conditions</topic><topic>Atomizing</topic><topic>Breakup</topic><topic>Claddings</topic><topic>Contact angle</topic><topic>Deposition</topic><topic>Droplets</topic><topic>Empirical analysis</topic><topic>Film boiling</topic><topic>Heat transfer</topic><topic>Hydrogen production</topic><topic>Leidenfrost phenomenon</topic><topic>Nuclear accidents &amp; safety</topic><topic>Nucleate boiling</topic><topic>Nucleation</topic><topic>Oxidation</topic><topic>Silicon carbide</topic><topic>Spreading</topic><topic>Surface roughness</topic><topic>Surface roughness effects</topic><topic>Thermodynamic properties</topic><topic>Weber number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, ZeFeng</creatorcontrib><creatorcontrib>Xiong, Jinbiao</creatorcontrib><creatorcontrib>Yao, Weiyi</creatorcontrib><creatorcontrib>Qu, Wenhai</creatorcontrib><creatorcontrib>Yang, Yanhua</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, ZeFeng</au><au>Xiong, Jinbiao</au><au>Yao, Weiyi</au><au>Qu, Wenhai</au><au>Yang, Yanhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation on the Leidenfrost phenomenon of droplet impact on heated silicon carbide surfaces</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2019-01</date><risdate>2019</risdate><volume>128</volume><spage>1206</spage><epage>1217</epage><pages>1206-1217</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Impact regime map of droplet impacting on heated silicon carbide surface is developed.•Droplet spreading dynamics and residence time during Leidenfrost state is analyzed.•Influence of surface roughness, wettability and surface material on the impact behaviors is analyzed.•Existing Leidenfrost temperature models are evaluated. Due to its superiority in suppressing hydrogen generation under severe accident conditions, silicon carbide (SiC) has been regarded as one of the promising candidates among the diverse accident tolerant fuel (ATF) claddings. Droplet impact experiments are conducted on preheated CVD-SiC surfaces with different roughness and the polished sintered-SiC and stainless-steel surface. The effects of surface roughness, contact angle and thermal properties on the impact behavior and cooling efficiency are discussed. The experiments are carried out in the range of 10 &lt; We &lt; 120 and Tsurf &lt; 460 °C. The observed droplet impact phenomena on all the surfaces are categorized into five regimes, i.e. deposition, rebound with secondary atomization, breakup with secondary atomization, rebound and breakup. Deposition corresponds to nucleate boiling. Rebound and breakup are the hydrodynamic phenomena of film boiling. The rest two correspond to transition boiling. Droplet breakup can be induced thermally or mechanically in the transition boiling. Surface roughness can enhance droplet breakup both in the film and transition boiling. The small contact angle also promotes breakup. The thermal property of surfaces has little effect on the critical Weber number for droplet breakup, but affect the Leidenfrost point temperature (LPT) and CHF temperature significantly. The rupture of liquid film induced by roughness reduces the stagnant pressure beneath the droplet and lower the LPT. The droplet spreading dynamics are analyzed quantitatively, and developed an empirical model for droplet maximum spreading factor. It is found that the LPT model based on homogeneous nucleation mechanism coincides well with present experimental results.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2018.09.091</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4459-4296</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2019-01, Vol.128, p.1206-1217
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2135602781
source ScienceDirect Journals
subjects Accident conditions
Atomizing
Breakup
Claddings
Contact angle
Deposition
Droplets
Empirical analysis
Film boiling
Heat transfer
Hydrogen production
Leidenfrost phenomenon
Nuclear accidents & safety
Nucleate boiling
Nucleation
Oxidation
Silicon carbide
Spreading
Surface roughness
Surface roughness effects
Thermodynamic properties
Weber number
title Experimental investigation on the Leidenfrost phenomenon of droplet impact on heated silicon carbide surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20on%20the%20Leidenfrost%20phenomenon%20of%20droplet%20impact%20on%20heated%20silicon%20carbide%20surfaces&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Wang,%20ZeFeng&rft.date=2019-01&rft.volume=128&rft.spage=1206&rft.epage=1217&rft.pages=1206-1217&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2018.09.091&rft_dat=%3Cproquest_cross%3E2135602781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-b70c06b3d9269b3fb7b98f20fe31c099eaf49c49e39d8cd2fa213615ca1cf15d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2135602781&rft_id=info:pmid/&rfr_iscdi=true