Loading…
Ensemble feature selection for high dimensional data: a new method and a comparative study
The curse of dimensionality is based on the fact that high dimensional data is often difficult to work with. A large number of features can increase the noise of the data and thus the error of a learning algorithm. Feature selection is a solution for such problems where there is a need to reduce the...
Saved in:
Published in: | Advances in data analysis and classification 2018-12, Vol.12 (4), p.937-952 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The curse of dimensionality is based on the fact that high dimensional data is often difficult to work with. A large number of features can increase the noise of the data and thus the error of a learning algorithm. Feature selection is a solution for such problems where there is a need to reduce the data dimensionality. Different feature selection algorithms may yield feature subsets that can be considered local optima in the space of feature subsets. Ensemble feature selection combines independent feature subsets and might give a better approximation to the optimal subset of features. We propose an ensemble feature selection approach based on feature selectors’ reliability assessment. It aims at providing a unique and stable feature selection without ignoring the predictive accuracy aspect. A classification algorithm is used as an evaluator to assign a confidence to features selected by ensemble members based on their associated classification performance. We compare our proposed approach to several existing techniques and to individual feature selection algorithms. Results show that our approach often improves classification performance and feature selection stability for high dimensional data sets. |
---|---|
ISSN: | 1862-5347 1862-5355 |
DOI: | 10.1007/s11634-017-0285-y |