Loading…

Quantum computing with Octonions

There are two schools of "measurement-only quantum computation". The first ([11]) using prepared entanglement (cluster states) and the second ([4]) using collections of anyons, which according to how they were produced, also have an entanglement pattern. We abstract the common principle be...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-10
Main Authors: Freedman, Michael, Shokrian-Zini, Modjtaba, Wang, Zhenghan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Freedman, Michael
Shokrian-Zini, Modjtaba
Wang, Zhenghan
description There are two schools of "measurement-only quantum computation". The first ([11]) using prepared entanglement (cluster states) and the second ([4]) using collections of anyons, which according to how they were produced, also have an entanglement pattern. We abstract the common principle behind both approaches and find the notion of a graph or even continuous family of equiangular projections. This notion is the leading character in the paper. The largest continuous family, in a sense made precise in Corollary 4.2, is associated with the octonions and this example leads to a universal computational scheme. Adiabatic quantum computation also fits into this rubric as a limiting case: nearby projections are nearly equiangular, so as a gapped ground state space is slowly varied the corrections to unitarity are small.
doi_str_mv 10.48550/arxiv.1811.08580
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2136808279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136808279</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-4828b5ad68937a52b91b33f3a5664a3d56372f1f5f8c8c696b8cfc71d755ee8d3</originalsourceid><addsrcrecordid>eNotjU1LAzEUAIMgWGp_gLcFz7sm7-1LXo5S_IJCEXov2exGt9ikbrLqz7egp4E5zAhxo2TTMpG8c9PP-NUoVqqRTCwvxAIQVc0twJVY5XyQUoI2QIQLUb3OLpb5WPl0PM1ljG_V91jeq60vKY4p5mtxGdxHHlb_XIrd48Nu_Vxvtk8v6_tN7Qhs3TJwR67XbNGcTWdVhxjQkdatw540GggqUGDPXlvdsQ_eqN4QDQP3uBS3f9nTlD7nIZf9Ic1TPB_3oFCzZDAWfwE9AD8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136808279</pqid></control><display><type>article</type><title>Quantum computing with Octonions</title><source>Publicly Available Content Database</source><creator>Freedman, Michael ; Shokrian-Zini, Modjtaba ; Wang, Zhenghan</creator><creatorcontrib>Freedman, Michael ; Shokrian-Zini, Modjtaba ; Wang, Zhenghan</creatorcontrib><description>There are two schools of "measurement-only quantum computation". The first ([11]) using prepared entanglement (cluster states) and the second ([4]) using collections of anyons, which according to how they were produced, also have an entanglement pattern. We abstract the common principle behind both approaches and find the notion of a graph or even continuous family of equiangular projections. This notion is the leading character in the paper. The largest continuous family, in a sense made precise in Corollary 4.2, is associated with the octonions and this example leads to a universal computational scheme. Adiabatic quantum computation also fits into this rubric as a limiting case: nearby projections are nearly equiangular, so as a gapped ground state space is slowly varied the corrections to unitarity are small.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1811.08580</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computation ; Entanglement ; Quantum computing</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2136808279?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Freedman, Michael</creatorcontrib><creatorcontrib>Shokrian-Zini, Modjtaba</creatorcontrib><creatorcontrib>Wang, Zhenghan</creatorcontrib><title>Quantum computing with Octonions</title><title>arXiv.org</title><description>There are two schools of "measurement-only quantum computation". The first ([11]) using prepared entanglement (cluster states) and the second ([4]) using collections of anyons, which according to how they were produced, also have an entanglement pattern. We abstract the common principle behind both approaches and find the notion of a graph or even continuous family of equiangular projections. This notion is the leading character in the paper. The largest continuous family, in a sense made precise in Corollary 4.2, is associated with the octonions and this example leads to a universal computational scheme. Adiabatic quantum computation also fits into this rubric as a limiting case: nearby projections are nearly equiangular, so as a gapped ground state space is slowly varied the corrections to unitarity are small.</description><subject>Computation</subject><subject>Entanglement</subject><subject>Quantum computing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEUAIMgWGp_gLcFz7sm7-1LXo5S_IJCEXov2exGt9ikbrLqz7egp4E5zAhxo2TTMpG8c9PP-NUoVqqRTCwvxAIQVc0twJVY5XyQUoI2QIQLUb3OLpb5WPl0PM1ljG_V91jeq60vKY4p5mtxGdxHHlb_XIrd48Nu_Vxvtk8v6_tN7Qhs3TJwR67XbNGcTWdVhxjQkdatw540GggqUGDPXlvdsQ_eqN4QDQP3uBS3f9nTlD7nIZf9Ic1TPB_3oFCzZDAWfwE9AD8Q</recordid><startdate>20191007</startdate><enddate>20191007</enddate><creator>Freedman, Michael</creator><creator>Shokrian-Zini, Modjtaba</creator><creator>Wang, Zhenghan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191007</creationdate><title>Quantum computing with Octonions</title><author>Freedman, Michael ; Shokrian-Zini, Modjtaba ; Wang, Zhenghan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-4828b5ad68937a52b91b33f3a5664a3d56372f1f5f8c8c696b8cfc71d755ee8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computation</topic><topic>Entanglement</topic><topic>Quantum computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Freedman, Michael</creatorcontrib><creatorcontrib>Shokrian-Zini, Modjtaba</creatorcontrib><creatorcontrib>Wang, Zhenghan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freedman, Michael</au><au>Shokrian-Zini, Modjtaba</au><au>Wang, Zhenghan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum computing with Octonions</atitle><jtitle>arXiv.org</jtitle><date>2019-10-07</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>There are two schools of "measurement-only quantum computation". The first ([11]) using prepared entanglement (cluster states) and the second ([4]) using collections of anyons, which according to how they were produced, also have an entanglement pattern. We abstract the common principle behind both approaches and find the notion of a graph or even continuous family of equiangular projections. This notion is the leading character in the paper. The largest continuous family, in a sense made precise in Corollary 4.2, is associated with the octonions and this example leads to a universal computational scheme. Adiabatic quantum computation also fits into this rubric as a limiting case: nearby projections are nearly equiangular, so as a gapped ground state space is slowly varied the corrections to unitarity are small.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1811.08580</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2136808279
source Publicly Available Content Database
subjects Computation
Entanglement
Quantum computing
title Quantum computing with Octonions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20computing%20with%20Octonions&rft.jtitle=arXiv.org&rft.au=Freedman,%20Michael&rft.date=2019-10-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1811.08580&rft_dat=%3Cproquest%3E2136808279%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-4828b5ad68937a52b91b33f3a5664a3d56372f1f5f8c8c696b8cfc71d755ee8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2136808279&rft_id=info:pmid/&rfr_iscdi=true