Loading…
A sparse grid approach to balance sheet risk measurement
In this work, we present a numerical method based on a sparse grid approximation to compute the loss distribution of the balance sheet of a financial or an insurance company. We first describe, in a stylised way, the assets and liabilities dynamics that are used for the numerical estimation of the b...
Saved in:
Published in: | arXiv.org 2018-11 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bénézet, Cyril Bonnefoy, Jérémie Chassagneux, Jean-François Deng, Shuoqing Camilo Garcia Trillos Lenôtre, Lionel |
description | In this work, we present a numerical method based on a sparse grid approximation to compute the loss distribution of the balance sheet of a financial or an insurance company. We first describe, in a stylised way, the assets and liabilities dynamics that are used for the numerical estimation of the balance sheet distribution. For the pricing and hedging model, we chose a classical Black & Scholes model with a stochastic interest rate following a Hull & White model. The risk management model describing the evolution of the parameters of the pricing and hedging model is a Gaussian model. The new numerical method is compared with the traditional nested simulation approach. We review the convergence of both methods to estimate the risk indicators under consideration. Finally, we provide numerical results showing that the sparse grid approach is extremely competitive for models with moderate dimension. |
doi_str_mv | 10.48550/arxiv.1811.08706 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2136809344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136809344</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-d1e3647842969a73b38c9cf85c8ed960726443a3afa6dbbaac94403f7ead5f0e3</originalsourceid><addsrcrecordid>eNotjslqwzAUAEWh0JDmA3oT9GxX0tN6DKEbBHLJPTzLz4mz2K5kl35-De1pbjPD2JMUpfbGiBdMP-13Kb2UpfBO2Du2UACy8FqpB7bK-SyEUNYpY2DB_JrnAVMmfkxtzXEYUo_xxMeeV3jFLhLPJ6KRpzZf-I0wT4lu1I2P7L7Ba6bVP5ds__a633wU293752a9LdAoXdSSwGo3t4MN6KACH0NsvIme6mCFU1ZrQMAGbV1ViDFoLaBxhLVpBMGSPf9p56-vifJ4OPdT6ubiQUmwXgSYBb-GNUfk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136809344</pqid></control><display><type>article</type><title>A sparse grid approach to balance sheet risk measurement</title><source>Publicly Available Content Database</source><creator>Bénézet, Cyril ; Bonnefoy, Jérémie ; Chassagneux, Jean-François ; Deng, Shuoqing ; Camilo Garcia Trillos ; Lenôtre, Lionel</creator><creatorcontrib>Bénézet, Cyril ; Bonnefoy, Jérémie ; Chassagneux, Jean-François ; Deng, Shuoqing ; Camilo Garcia Trillos ; Lenôtre, Lionel</creatorcontrib><description>In this work, we present a numerical method based on a sparse grid approximation to compute the loss distribution of the balance sheet of a financial or an insurance company. We first describe, in a stylised way, the assets and liabilities dynamics that are used for the numerical estimation of the balance sheet distribution. For the pricing and hedging model, we chose a classical Black & Scholes model with a stochastic interest rate following a Hull & White model. The risk management model describing the evolution of the parameters of the pricing and hedging model is a Gaussian model. The new numerical method is compared with the traditional nested simulation approach. We review the convergence of both methods to estimate the risk indicators under consideration. Finally, we provide numerical results showing that the sparse grid approach is extremely competitive for models with moderate dimension.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1811.08706</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Balance sheets ; Computer simulation ; Liabilities ; Mathematical models ; Numerical analysis ; Numerical methods ; Portfolio management ; Pricing ; Risk ; Risk management</subject><ispartof>arXiv.org, 2018-11</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2136809344?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Bénézet, Cyril</creatorcontrib><creatorcontrib>Bonnefoy, Jérémie</creatorcontrib><creatorcontrib>Chassagneux, Jean-François</creatorcontrib><creatorcontrib>Deng, Shuoqing</creatorcontrib><creatorcontrib>Camilo Garcia Trillos</creatorcontrib><creatorcontrib>Lenôtre, Lionel</creatorcontrib><title>A sparse grid approach to balance sheet risk measurement</title><title>arXiv.org</title><description>In this work, we present a numerical method based on a sparse grid approximation to compute the loss distribution of the balance sheet of a financial or an insurance company. We first describe, in a stylised way, the assets and liabilities dynamics that are used for the numerical estimation of the balance sheet distribution. For the pricing and hedging model, we chose a classical Black & Scholes model with a stochastic interest rate following a Hull & White model. The risk management model describing the evolution of the parameters of the pricing and hedging model is a Gaussian model. The new numerical method is compared with the traditional nested simulation approach. We review the convergence of both methods to estimate the risk indicators under consideration. Finally, we provide numerical results showing that the sparse grid approach is extremely competitive for models with moderate dimension.</description><subject>Balance sheets</subject><subject>Computer simulation</subject><subject>Liabilities</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Portfolio management</subject><subject>Pricing</subject><subject>Risk</subject><subject>Risk management</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjslqwzAUAEWh0JDmA3oT9GxX0tN6DKEbBHLJPTzLz4mz2K5kl35-De1pbjPD2JMUpfbGiBdMP-13Kb2UpfBO2Du2UACy8FqpB7bK-SyEUNYpY2DB_JrnAVMmfkxtzXEYUo_xxMeeV3jFLhLPJ6KRpzZf-I0wT4lu1I2P7L7Ba6bVP5ds__a633wU293752a9LdAoXdSSwGo3t4MN6KACH0NsvIme6mCFU1ZrQMAGbV1ViDFoLaBxhLVpBMGSPf9p56-vifJ4OPdT6ubiQUmwXgSYBb-GNUfk</recordid><startdate>20181121</startdate><enddate>20181121</enddate><creator>Bénézet, Cyril</creator><creator>Bonnefoy, Jérémie</creator><creator>Chassagneux, Jean-François</creator><creator>Deng, Shuoqing</creator><creator>Camilo Garcia Trillos</creator><creator>Lenôtre, Lionel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181121</creationdate><title>A sparse grid approach to balance sheet risk measurement</title><author>Bénézet, Cyril ; Bonnefoy, Jérémie ; Chassagneux, Jean-François ; Deng, Shuoqing ; Camilo Garcia Trillos ; Lenôtre, Lionel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-d1e3647842969a73b38c9cf85c8ed960726443a3afa6dbbaac94403f7ead5f0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Balance sheets</topic><topic>Computer simulation</topic><topic>Liabilities</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Portfolio management</topic><topic>Pricing</topic><topic>Risk</topic><topic>Risk management</topic><toplevel>online_resources</toplevel><creatorcontrib>Bénézet, Cyril</creatorcontrib><creatorcontrib>Bonnefoy, Jérémie</creatorcontrib><creatorcontrib>Chassagneux, Jean-François</creatorcontrib><creatorcontrib>Deng, Shuoqing</creatorcontrib><creatorcontrib>Camilo Garcia Trillos</creatorcontrib><creatorcontrib>Lenôtre, Lionel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bénézet, Cyril</au><au>Bonnefoy, Jérémie</au><au>Chassagneux, Jean-François</au><au>Deng, Shuoqing</au><au>Camilo Garcia Trillos</au><au>Lenôtre, Lionel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sparse grid approach to balance sheet risk measurement</atitle><jtitle>arXiv.org</jtitle><date>2018-11-21</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In this work, we present a numerical method based on a sparse grid approximation to compute the loss distribution of the balance sheet of a financial or an insurance company. We first describe, in a stylised way, the assets and liabilities dynamics that are used for the numerical estimation of the balance sheet distribution. For the pricing and hedging model, we chose a classical Black & Scholes model with a stochastic interest rate following a Hull & White model. The risk management model describing the evolution of the parameters of the pricing and hedging model is a Gaussian model. The new numerical method is compared with the traditional nested simulation approach. We review the convergence of both methods to estimate the risk indicators under consideration. Finally, we provide numerical results showing that the sparse grid approach is extremely competitive for models with moderate dimension.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1811.08706</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2136809344 |
source | Publicly Available Content Database |
subjects | Balance sheets Computer simulation Liabilities Mathematical models Numerical analysis Numerical methods Portfolio management Pricing Risk Risk management |
title | A sparse grid approach to balance sheet risk measurement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sparse%20grid%20approach%20to%20balance%20sheet%20risk%20measurement&rft.jtitle=arXiv.org&rft.au=B%C3%A9n%C3%A9zet,%20Cyril&rft.date=2018-11-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1811.08706&rft_dat=%3Cproquest%3E2136809344%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-d1e3647842969a73b38c9cf85c8ed960726443a3afa6dbbaac94403f7ead5f0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2136809344&rft_id=info:pmid/&rfr_iscdi=true |