Loading…

A sparse grid approach to balance sheet risk measurement

In this work, we present a numerical method based on a sparse grid approximation to compute the loss distribution of the balance sheet of a financial or an insurance company. We first describe, in a stylised way, the assets and liabilities dynamics that are used for the numerical estimation of the b...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-11
Main Authors: Bénézet, Cyril, Bonnefoy, Jérémie, Chassagneux, Jean-François, Deng, Shuoqing, Camilo Garcia Trillos, Lenôtre, Lionel
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bénézet, Cyril
Bonnefoy, Jérémie
Chassagneux, Jean-François
Deng, Shuoqing
Camilo Garcia Trillos
Lenôtre, Lionel
description In this work, we present a numerical method based on a sparse grid approximation to compute the loss distribution of the balance sheet of a financial or an insurance company. We first describe, in a stylised way, the assets and liabilities dynamics that are used for the numerical estimation of the balance sheet distribution. For the pricing and hedging model, we chose a classical Black & Scholes model with a stochastic interest rate following a Hull & White model. The risk management model describing the evolution of the parameters of the pricing and hedging model is a Gaussian model. The new numerical method is compared with the traditional nested simulation approach. We review the convergence of both methods to estimate the risk indicators under consideration. Finally, we provide numerical results showing that the sparse grid approach is extremely competitive for models with moderate dimension.
doi_str_mv 10.48550/arxiv.1811.08706
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2136809344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136809344</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-d1e3647842969a73b38c9cf85c8ed960726443a3afa6dbbaac94403f7ead5f0e3</originalsourceid><addsrcrecordid>eNotjslqwzAUAEWh0JDmA3oT9GxX0tN6DKEbBHLJPTzLz4mz2K5kl35-De1pbjPD2JMUpfbGiBdMP-13Kb2UpfBO2Du2UACy8FqpB7bK-SyEUNYpY2DB_JrnAVMmfkxtzXEYUo_xxMeeV3jFLhLPJ6KRpzZf-I0wT4lu1I2P7L7Ba6bVP5ds__a633wU293752a9LdAoXdSSwGo3t4MN6KACH0NsvIme6mCFU1ZrQMAGbV1ViDFoLaBxhLVpBMGSPf9p56-vifJ4OPdT6ubiQUmwXgSYBb-GNUfk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136809344</pqid></control><display><type>article</type><title>A sparse grid approach to balance sheet risk measurement</title><source>Publicly Available Content Database</source><creator>Bénézet, Cyril ; Bonnefoy, Jérémie ; Chassagneux, Jean-François ; Deng, Shuoqing ; Camilo Garcia Trillos ; Lenôtre, Lionel</creator><creatorcontrib>Bénézet, Cyril ; Bonnefoy, Jérémie ; Chassagneux, Jean-François ; Deng, Shuoqing ; Camilo Garcia Trillos ; Lenôtre, Lionel</creatorcontrib><description>In this work, we present a numerical method based on a sparse grid approximation to compute the loss distribution of the balance sheet of a financial or an insurance company. We first describe, in a stylised way, the assets and liabilities dynamics that are used for the numerical estimation of the balance sheet distribution. For the pricing and hedging model, we chose a classical Black &amp; Scholes model with a stochastic interest rate following a Hull &amp; White model. The risk management model describing the evolution of the parameters of the pricing and hedging model is a Gaussian model. The new numerical method is compared with the traditional nested simulation approach. We review the convergence of both methods to estimate the risk indicators under consideration. Finally, we provide numerical results showing that the sparse grid approach is extremely competitive for models with moderate dimension.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1811.08706</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Balance sheets ; Computer simulation ; Liabilities ; Mathematical models ; Numerical analysis ; Numerical methods ; Portfolio management ; Pricing ; Risk ; Risk management</subject><ispartof>arXiv.org, 2018-11</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2136809344?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Bénézet, Cyril</creatorcontrib><creatorcontrib>Bonnefoy, Jérémie</creatorcontrib><creatorcontrib>Chassagneux, Jean-François</creatorcontrib><creatorcontrib>Deng, Shuoqing</creatorcontrib><creatorcontrib>Camilo Garcia Trillos</creatorcontrib><creatorcontrib>Lenôtre, Lionel</creatorcontrib><title>A sparse grid approach to balance sheet risk measurement</title><title>arXiv.org</title><description>In this work, we present a numerical method based on a sparse grid approximation to compute the loss distribution of the balance sheet of a financial or an insurance company. We first describe, in a stylised way, the assets and liabilities dynamics that are used for the numerical estimation of the balance sheet distribution. For the pricing and hedging model, we chose a classical Black &amp; Scholes model with a stochastic interest rate following a Hull &amp; White model. The risk management model describing the evolution of the parameters of the pricing and hedging model is a Gaussian model. The new numerical method is compared with the traditional nested simulation approach. We review the convergence of both methods to estimate the risk indicators under consideration. Finally, we provide numerical results showing that the sparse grid approach is extremely competitive for models with moderate dimension.</description><subject>Balance sheets</subject><subject>Computer simulation</subject><subject>Liabilities</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Portfolio management</subject><subject>Pricing</subject><subject>Risk</subject><subject>Risk management</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjslqwzAUAEWh0JDmA3oT9GxX0tN6DKEbBHLJPTzLz4mz2K5kl35-De1pbjPD2JMUpfbGiBdMP-13Kb2UpfBO2Du2UACy8FqpB7bK-SyEUNYpY2DB_JrnAVMmfkxtzXEYUo_xxMeeV3jFLhLPJ6KRpzZf-I0wT4lu1I2P7L7Ba6bVP5ds__a633wU293752a9LdAoXdSSwGo3t4MN6KACH0NsvIme6mCFU1ZrQMAGbV1ViDFoLaBxhLVpBMGSPf9p56-vifJ4OPdT6ubiQUmwXgSYBb-GNUfk</recordid><startdate>20181121</startdate><enddate>20181121</enddate><creator>Bénézet, Cyril</creator><creator>Bonnefoy, Jérémie</creator><creator>Chassagneux, Jean-François</creator><creator>Deng, Shuoqing</creator><creator>Camilo Garcia Trillos</creator><creator>Lenôtre, Lionel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181121</creationdate><title>A sparse grid approach to balance sheet risk measurement</title><author>Bénézet, Cyril ; Bonnefoy, Jérémie ; Chassagneux, Jean-François ; Deng, Shuoqing ; Camilo Garcia Trillos ; Lenôtre, Lionel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-d1e3647842969a73b38c9cf85c8ed960726443a3afa6dbbaac94403f7ead5f0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Balance sheets</topic><topic>Computer simulation</topic><topic>Liabilities</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Portfolio management</topic><topic>Pricing</topic><topic>Risk</topic><topic>Risk management</topic><toplevel>online_resources</toplevel><creatorcontrib>Bénézet, Cyril</creatorcontrib><creatorcontrib>Bonnefoy, Jérémie</creatorcontrib><creatorcontrib>Chassagneux, Jean-François</creatorcontrib><creatorcontrib>Deng, Shuoqing</creatorcontrib><creatorcontrib>Camilo Garcia Trillos</creatorcontrib><creatorcontrib>Lenôtre, Lionel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bénézet, Cyril</au><au>Bonnefoy, Jérémie</au><au>Chassagneux, Jean-François</au><au>Deng, Shuoqing</au><au>Camilo Garcia Trillos</au><au>Lenôtre, Lionel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sparse grid approach to balance sheet risk measurement</atitle><jtitle>arXiv.org</jtitle><date>2018-11-21</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In this work, we present a numerical method based on a sparse grid approximation to compute the loss distribution of the balance sheet of a financial or an insurance company. We first describe, in a stylised way, the assets and liabilities dynamics that are used for the numerical estimation of the balance sheet distribution. For the pricing and hedging model, we chose a classical Black &amp; Scholes model with a stochastic interest rate following a Hull &amp; White model. The risk management model describing the evolution of the parameters of the pricing and hedging model is a Gaussian model. The new numerical method is compared with the traditional nested simulation approach. We review the convergence of both methods to estimate the risk indicators under consideration. Finally, we provide numerical results showing that the sparse grid approach is extremely competitive for models with moderate dimension.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1811.08706</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2136809344
source Publicly Available Content Database
subjects Balance sheets
Computer simulation
Liabilities
Mathematical models
Numerical analysis
Numerical methods
Portfolio management
Pricing
Risk
Risk management
title A sparse grid approach to balance sheet risk measurement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sparse%20grid%20approach%20to%20balance%20sheet%20risk%20measurement&rft.jtitle=arXiv.org&rft.au=B%C3%A9n%C3%A9zet,%20Cyril&rft.date=2018-11-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1811.08706&rft_dat=%3Cproquest%3E2136809344%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-d1e3647842969a73b38c9cf85c8ed960726443a3afa6dbbaac94403f7ead5f0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2136809344&rft_id=info:pmid/&rfr_iscdi=true