Loading…

GiB: A ame Theory nspired inarization Technique for Degraded Document Images

Document image binarization classifies each pixel in an input document image as either foreground or background under the assumption that the document is pseudo binary in nature. However, noise introduced during acquisition or due to aging or handling of the document can make binarization a challeng...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2019-03, Vol.28 (3), p.1443-1455
Main Authors: Bhowmik, Showmik, Sarkar, Ram, Das, Bishwadeep, Doermann, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1364-3d88da6faaa105af7fbe30ead4b9eae5e2159070e74e24f7ca7e1000389168843
cites cdi_FETCH-LOGICAL-c1364-3d88da6faaa105af7fbe30ead4b9eae5e2159070e74e24f7ca7e1000389168843
container_end_page 1455
container_issue 3
container_start_page 1443
container_title IEEE transactions on image processing
container_volume 28
creator Bhowmik, Showmik
Sarkar, Ram
Das, Bishwadeep
Doermann, David
description Document image binarization classifies each pixel in an input document image as either foreground or background under the assumption that the document is pseudo binary in nature. However, noise introduced during acquisition or due to aging or handling of the document can make binarization a challenging task. This paper presents a novel game theory inspired binarization technique for degraded document images. A two-player, non-zero-sum, non-cooperative game is designed at the pixel level to extract the local information, which is then fed to a K -means algorithm to classify a pixel as foreground or background. We also present a preprocessing step that is performed to eliminate the intensity variation that often appears in the background and a post-processing step to refine the results. The method is tested on seven publicly available datasets, namely, DIBCO 2009-14 and 2016. The experimental results show that game theory inspired binarization outperforms competing state-of-the-art methods in most cases.
doi_str_mv 10.1109/TIP.2018.2878959
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2137554724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8517161</ieee_id><sourcerecordid>2137554724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1364-3d88da6faaa105af7fbe30ead4b9eae5e2159070e74e24f7ca7e1000389168843</originalsourceid><addsrcrecordid>eNo9kEFPAjEQRhujEUTvJl6aeF6c2bbbrjcERRISPaznpuzOQonsYhcO-OstgXiaObxv5stj7B5hiAj5UzH7HKaAZpgabXKVX7A-5hITAJlexh2UTjTKvMduum4NgFJhds16AoTRWkCfzaf-5ZmPuNsQL1bUhgNvuq0PVHHfuOB_3c63DS-oXDX-Z0-8bgOf0DK4KiKTttxvqNnx2cYtqbtlV7X77ujuPAfs6-21GL8n84_pbDyaJyWKTCaiMqZyWe2ciw1dresFCSBXyUVOjhSlqHLQQFpSKmtdOk0IEDvnmBkjxYA9nu5uQxs7dTu7bvehiS9tikIrJXV6pOBElaHtukC13Qa_ceFgEexRn4367FGfPeuLkYdTxBPRP24UasxQ_AEpRWhp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137554724</pqid></control><display><type>article</type><title>GiB: A ame Theory nspired inarization Technique for Degraded Document Images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bhowmik, Showmik ; Sarkar, Ram ; Das, Bishwadeep ; Doermann, David</creator><creatorcontrib>Bhowmik, Showmik ; Sarkar, Ram ; Das, Bishwadeep ; Doermann, David</creatorcontrib><description>Document image binarization classifies each pixel in an input document image as either foreground or background under the assumption that the document is pseudo binary in nature. However, noise introduced during acquisition or due to aging or handling of the document can make binarization a challenging task. This paper presents a novel game theory inspired binarization technique for degraded document images. A two-player, non-zero-sum, non-cooperative game is designed at the pixel level to extract the local information, which is then fed to a K -means algorithm to classify a pixel as foreground or background. We also present a preprocessing step that is performed to eliminate the intensity variation that often appears in the background and a post-processing step to refine the results. The method is tested on seven publicly available datasets, namely, DIBCO 2009-14 and 2016. The experimental results show that game theory inspired binarization outperforms competing state-of-the-art methods in most cases.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2878959</identifier><identifier>PMID: 30387730</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Binarization ; DIBCO ; document image ; Document image processing ; Game theory ; Image classification ; K-means ; Nash equilibrium ; Pixels ; Post-processing ; State of the art ; two-player game ; Zero sum games</subject><ispartof>IEEE transactions on image processing, 2019-03, Vol.28 (3), p.1443-1455</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1364-3d88da6faaa105af7fbe30ead4b9eae5e2159070e74e24f7ca7e1000389168843</citedby><cites>FETCH-LOGICAL-c1364-3d88da6faaa105af7fbe30ead4b9eae5e2159070e74e24f7ca7e1000389168843</cites><orcidid>0000-0003-3971-5807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8517161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Bhowmik, Showmik</creatorcontrib><creatorcontrib>Sarkar, Ram</creatorcontrib><creatorcontrib>Das, Bishwadeep</creatorcontrib><creatorcontrib>Doermann, David</creatorcontrib><title>GiB: A ame Theory nspired inarization Technique for Degraded Document Images</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>Document image binarization classifies each pixel in an input document image as either foreground or background under the assumption that the document is pseudo binary in nature. However, noise introduced during acquisition or due to aging or handling of the document can make binarization a challenging task. This paper presents a novel game theory inspired binarization technique for degraded document images. A two-player, non-zero-sum, non-cooperative game is designed at the pixel level to extract the local information, which is then fed to a K -means algorithm to classify a pixel as foreground or background. We also present a preprocessing step that is performed to eliminate the intensity variation that often appears in the background and a post-processing step to refine the results. The method is tested on seven publicly available datasets, namely, DIBCO 2009-14 and 2016. The experimental results show that game theory inspired binarization outperforms competing state-of-the-art methods in most cases.</description><subject>Binarization</subject><subject>DIBCO</subject><subject>document image</subject><subject>Document image processing</subject><subject>Game theory</subject><subject>Image classification</subject><subject>K-means</subject><subject>Nash equilibrium</subject><subject>Pixels</subject><subject>Post-processing</subject><subject>State of the art</subject><subject>two-player game</subject><subject>Zero sum games</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPAjEQRhujEUTvJl6aeF6c2bbbrjcERRISPaznpuzOQonsYhcO-OstgXiaObxv5stj7B5hiAj5UzH7HKaAZpgabXKVX7A-5hITAJlexh2UTjTKvMduum4NgFJhds16AoTRWkCfzaf-5ZmPuNsQL1bUhgNvuq0PVHHfuOB_3c63DS-oXDX-Z0-8bgOf0DK4KiKTttxvqNnx2cYtqbtlV7X77ujuPAfs6-21GL8n84_pbDyaJyWKTCaiMqZyWe2ciw1dresFCSBXyUVOjhSlqHLQQFpSKmtdOk0IEDvnmBkjxYA9nu5uQxs7dTu7bvehiS9tikIrJXV6pOBElaHtukC13Qa_ceFgEexRn4367FGfPeuLkYdTxBPRP24UasxQ_AEpRWhp</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Bhowmik, Showmik</creator><creator>Sarkar, Ram</creator><creator>Das, Bishwadeep</creator><creator>Doermann, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3971-5807</orcidid></search><sort><creationdate>201903</creationdate><title>GiB: A ame Theory nspired inarization Technique for Degraded Document Images</title><author>Bhowmik, Showmik ; Sarkar, Ram ; Das, Bishwadeep ; Doermann, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1364-3d88da6faaa105af7fbe30ead4b9eae5e2159070e74e24f7ca7e1000389168843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Binarization</topic><topic>DIBCO</topic><topic>document image</topic><topic>Document image processing</topic><topic>Game theory</topic><topic>Image classification</topic><topic>K-means</topic><topic>Nash equilibrium</topic><topic>Pixels</topic><topic>Post-processing</topic><topic>State of the art</topic><topic>two-player game</topic><topic>Zero sum games</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhowmik, Showmik</creatorcontrib><creatorcontrib>Sarkar, Ram</creatorcontrib><creatorcontrib>Das, Bishwadeep</creatorcontrib><creatorcontrib>Doermann, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhowmik, Showmik</au><au>Sarkar, Ram</au><au>Das, Bishwadeep</au><au>Doermann, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GiB: A ame Theory nspired inarization Technique for Degraded Document Images</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2019-03</date><risdate>2019</risdate><volume>28</volume><issue>3</issue><spage>1443</spage><epage>1455</epage><pages>1443-1455</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Document image binarization classifies each pixel in an input document image as either foreground or background under the assumption that the document is pseudo binary in nature. However, noise introduced during acquisition or due to aging or handling of the document can make binarization a challenging task. This paper presents a novel game theory inspired binarization technique for degraded document images. A two-player, non-zero-sum, non-cooperative game is designed at the pixel level to extract the local information, which is then fed to a K -means algorithm to classify a pixel as foreground or background. We also present a preprocessing step that is performed to eliminate the intensity variation that often appears in the background and a post-processing step to refine the results. The method is tested on seven publicly available datasets, namely, DIBCO 2009-14 and 2016. The experimental results show that game theory inspired binarization outperforms competing state-of-the-art methods in most cases.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>30387730</pmid><doi>10.1109/TIP.2018.2878959</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3971-5807</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2019-03, Vol.28 (3), p.1443-1455
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_2137554724
source IEEE Electronic Library (IEL) Journals
subjects Binarization
DIBCO
document image
Document image processing
Game theory
Image classification
K-means
Nash equilibrium
Pixels
Post-processing
State of the art
two-player game
Zero sum games
title GiB: A ame Theory nspired inarization Technique for Degraded Document Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GiB:%20A%20ame%20Theory%20nspired%20inarization%20Technique%20for%20Degraded%20Document%20Images&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Bhowmik,%20Showmik&rft.date=2019-03&rft.volume=28&rft.issue=3&rft.spage=1443&rft.epage=1455&rft.pages=1443-1455&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2878959&rft_dat=%3Cproquest_ieee_%3E2137554724%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1364-3d88da6faaa105af7fbe30ead4b9eae5e2159070e74e24f7ca7e1000389168843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2137554724&rft_id=info:pmid/30387730&rft_ieee_id=8517161&rfr_iscdi=true