Loading…

Optically Pumped Magnetometers for Magneto-Myography to Study the Innervation of the Hand

The central nervous system exerts control over the activation of muscles via a dense network of nerve fibers targeting each individual muscle. There are numerous clinical situations where a detailed assessment of the nerve-innervation pattern is required for diagnosis and treatment. Especially, deep...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2018-11, Vol.26 (11), p.2226-2230
Main Authors: Broser, Philip J., Knappe, Svenja, Kajal, Diljit-Singh, Noury, Nima, Alem, Orang, Shah, Vishal, Braun, Christoph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The central nervous system exerts control over the activation of muscles via a dense network of nerve fibers targeting each individual muscle. There are numerous clinical situations where a detailed assessment of the nerve-innervation pattern is required for diagnosis and treatment. Especially, deep muscles are hard to examine and are as yet only accessible by uncomfortable and painful needle EMG techniques. Just recently, a new and flexible method and device became available to measure the small magnetic fields generated by the contraction of the muscles: optically pumped magnetometers (OPMs). OPMs are small devices that measure the zero-field level crossing resonance of spin-polarized rubidium atoms. The resonance is dependent on the local magnetic field strength, and therefore, these devices are able to measure small magnetic fields in the range of a few hundred femtoteslas. In this paper, we demonstrate as a proof of principle that OPMs can be used to measure the low magnetic fields generated by small hand muscles after electric stimulation of the ulnar or median nerve. We show that using this technique, we are able to record differential innervation pattern of small palmar hand muscles and are capable of distinguishing between areas innervated by the median or ulnar nerve. We expect that the new approach will have an important impact on the diagnosis of nerve entrapment syndromes, spinal cord lesions, and neuromuscular diseases.
ISSN:1534-4320
1558-0210
DOI:10.1109/TNSRE.2018.2871947