Loading…

Bayesian Computations for Random Environment Models

This paper deals with the analysis of reliability data from a Bayesian perspective for Random Environment (RE) models. We give an overview of current literature on RE models. We also study the computational problems associated with the implementations of RE models in a Bayesian setting. Then, we pre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied statistics 2004-07, Vol.31 (6), p.645-659
Main Author: Al-Mutairi, D. K.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 659
container_issue 6
container_start_page 645
container_title Journal of applied statistics
container_volume 31
creator Al-Mutairi, D. K.
description This paper deals with the analysis of reliability data from a Bayesian perspective for Random Environment (RE) models. We give an overview of current literature on RE models. We also study the computational problems associated with the implementations of RE models in a Bayesian setting. Then, we present the Markov Chain Monte Carlo technique to solve such problems. These problems arise in posterior and predictive analysis and their relevant quantities such as mean, variance, and median. The suggested methodology is incorporated with an illustration.
doi_str_mv 10.1080/1478881042000214631
format article
fullrecord <record><control><sourceid>proquest_repec</sourceid><recordid>TN_cdi_proquest_journals_213792884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>816886911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-9176207c76ce3ad2ac339dd1555680592bad8a95102143747d6e9abd216fab843</originalsourceid><addsrcrecordid>eNqFkE9PGzEUxC1EJQLlE3BZcV9q-6299gUJIvpPqZAqOFsva6_YKGsvtpOSb1-nQZxQOYznMvPz0xBywegVo4p-YU2rlGK04ZRSzhoJ7IjMGEhaUwH8mMwol7JuWgkn5DSlVYkpJmBG4BZ3Lg3oq3kYp03GPASfqj7E6jd6G8bqzm-HGPzofK5-BevW6TP51OM6ufNXPyOPX-8e5t_rxf23H_ObRd2BlrnWrJWctl0rOwdoOXYA2lomhJCKCs2XaBVqwfYXQ9u0VjqNS8uZ7HGpGjgjlwfuFMPzxqVsVmETffnScAat5upfCA6hLoaUouvNFIcR484wavbjmHfGKa2fh1Z0k-veKhn7FU4po9kaQGDl2RWVYlNsKJJF094bYaTQ5imPBXZ9gA2-7DbinxDXtrB26xD7iL4bkoH_X6M_BLzTM_klw18WXZRx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213792884</pqid></control><display><type>article</type><title>Bayesian Computations for Random Environment Models</title><source>EBSCOhost Business Source Ultimate</source><source>Taylor and Francis Science and Technology Collection</source><creator>Al-Mutairi, D. K.</creator><creatorcontrib>Al-Mutairi, D. K.</creatorcontrib><description>This paper deals with the analysis of reliability data from a Bayesian perspective for Random Environment (RE) models. We give an overview of current literature on RE models. We also study the computational problems associated with the implementations of RE models in a Bayesian setting. Then, we present the Markov Chain Monte Carlo technique to solve such problems. These problems arise in posterior and predictive analysis and their relevant quantities such as mean, variance, and median. The suggested methodology is incorporated with an illustration.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/1478881042000214631</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Group</publisher><subject>Bayesian analysis ; Bayesian Computation ; Bayesian Inference ; Gibbs Sampling ; Joint Prior Distribution ; Markov analysis ; Random Environment</subject><ispartof>Journal of applied statistics, 2004-07, Vol.31 (6), p.645-659</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2004</rights><rights>Copyright Carfax Publishing Company Jul 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/tafjapsta/v_3a31_3ay_3a2004_3ai_3a6_3ap_3a645-659.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Mutairi, D. K.</creatorcontrib><title>Bayesian Computations for Random Environment Models</title><title>Journal of applied statistics</title><description>This paper deals with the analysis of reliability data from a Bayesian perspective for Random Environment (RE) models. We give an overview of current literature on RE models. We also study the computational problems associated with the implementations of RE models in a Bayesian setting. Then, we present the Markov Chain Monte Carlo technique to solve such problems. These problems arise in posterior and predictive analysis and their relevant quantities such as mean, variance, and median. The suggested methodology is incorporated with an illustration.</description><subject>Bayesian analysis</subject><subject>Bayesian Computation</subject><subject>Bayesian Inference</subject><subject>Gibbs Sampling</subject><subject>Joint Prior Distribution</subject><subject>Markov analysis</subject><subject>Random Environment</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PGzEUxC1EJQLlE3BZcV9q-6299gUJIvpPqZAqOFsva6_YKGsvtpOSb1-nQZxQOYznMvPz0xBywegVo4p-YU2rlGK04ZRSzhoJ7IjMGEhaUwH8mMwol7JuWgkn5DSlVYkpJmBG4BZ3Lg3oq3kYp03GPASfqj7E6jd6G8bqzm-HGPzofK5-BevW6TP51OM6ufNXPyOPX-8e5t_rxf23H_ObRd2BlrnWrJWctl0rOwdoOXYA2lomhJCKCs2XaBVqwfYXQ9u0VjqNS8uZ7HGpGjgjlwfuFMPzxqVsVmETffnScAat5upfCA6hLoaUouvNFIcR484wavbjmHfGKa2fh1Z0k-veKhn7FU4po9kaQGDl2RWVYlNsKJJF094bYaTQ5imPBXZ9gA2-7DbinxDXtrB26xD7iL4bkoH_X6M_BLzTM_klw18WXZRx</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Al-Mutairi, D. K.</creator><general>Taylor &amp; Francis Group</general><general>Taylor and Francis Journals</general><general>Taylor &amp; Francis Ltd</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040701</creationdate><title>Bayesian Computations for Random Environment Models</title><author>Al-Mutairi, D. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-9176207c76ce3ad2ac339dd1555680592bad8a95102143747d6e9abd216fab843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bayesian analysis</topic><topic>Bayesian Computation</topic><topic>Bayesian Inference</topic><topic>Gibbs Sampling</topic><topic>Joint Prior Distribution</topic><topic>Markov analysis</topic><topic>Random Environment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Mutairi, D. K.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Mutairi, D. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Computations for Random Environment Models</atitle><jtitle>Journal of applied statistics</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>31</volume><issue>6</issue><spage>645</spage><epage>659</epage><pages>645-659</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>This paper deals with the analysis of reliability data from a Bayesian perspective for Random Environment (RE) models. We give an overview of current literature on RE models. We also study the computational problems associated with the implementations of RE models in a Bayesian setting. Then, we present the Markov Chain Monte Carlo technique to solve such problems. These problems arise in posterior and predictive analysis and their relevant quantities such as mean, variance, and median. The suggested methodology is incorporated with an illustration.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/1478881042000214631</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4763
ispartof Journal of applied statistics, 2004-07, Vol.31 (6), p.645-659
issn 0266-4763
1360-0532
language eng
recordid cdi_proquest_journals_213792884
source EBSCOhost Business Source Ultimate; Taylor and Francis Science and Technology Collection
subjects Bayesian analysis
Bayesian Computation
Bayesian Inference
Gibbs Sampling
Joint Prior Distribution
Markov analysis
Random Environment
title Bayesian Computations for Random Environment Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_repec&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Computations%20for%20Random%20Environment%20Models&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Al-Mutairi,%20D.%20K.&rft.date=2004-07-01&rft.volume=31&rft.issue=6&rft.spage=645&rft.epage=659&rft.pages=645-659&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/1478881042000214631&rft_dat=%3Cproquest_repec%3E816886911%3C/proquest_repec%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-9176207c76ce3ad2ac339dd1555680592bad8a95102143747d6e9abd216fab843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213792884&rft_id=info:pmid/&rfr_iscdi=true