Loading…
Bayesian Computations for Random Environment Models
This paper deals with the analysis of reliability data from a Bayesian perspective for Random Environment (RE) models. We give an overview of current literature on RE models. We also study the computational problems associated with the implementations of RE models in a Bayesian setting. Then, we pre...
Saved in:
Published in: | Journal of applied statistics 2004-07, Vol.31 (6), p.645-659 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 659 |
container_issue | 6 |
container_start_page | 645 |
container_title | Journal of applied statistics |
container_volume | 31 |
creator | Al-Mutairi, D. K. |
description | This paper deals with the analysis of reliability data from a Bayesian perspective for Random Environment (RE) models. We give an overview of current literature on RE models. We also study the computational problems associated with the implementations of RE models in a Bayesian setting. Then, we present the Markov Chain Monte Carlo technique to solve such problems. These problems arise in posterior and predictive analysis and their relevant quantities such as mean, variance, and median. The suggested methodology is incorporated with an illustration. |
doi_str_mv | 10.1080/1478881042000214631 |
format | article |
fullrecord | <record><control><sourceid>proquest_repec</sourceid><recordid>TN_cdi_proquest_journals_213792884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>816886911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-9176207c76ce3ad2ac339dd1555680592bad8a95102143747d6e9abd216fab843</originalsourceid><addsrcrecordid>eNqFkE9PGzEUxC1EJQLlE3BZcV9q-6299gUJIvpPqZAqOFsva6_YKGsvtpOSb1-nQZxQOYznMvPz0xBywegVo4p-YU2rlGK04ZRSzhoJ7IjMGEhaUwH8mMwol7JuWgkn5DSlVYkpJmBG4BZ3Lg3oq3kYp03GPASfqj7E6jd6G8bqzm-HGPzofK5-BevW6TP51OM6ufNXPyOPX-8e5t_rxf23H_ObRd2BlrnWrJWctl0rOwdoOXYA2lomhJCKCs2XaBVqwfYXQ9u0VjqNS8uZ7HGpGjgjlwfuFMPzxqVsVmETffnScAat5upfCA6hLoaUouvNFIcR484wavbjmHfGKa2fh1Z0k-veKhn7FU4po9kaQGDl2RWVYlNsKJJF094bYaTQ5imPBXZ9gA2-7DbinxDXtrB26xD7iL4bkoH_X6M_BLzTM_klw18WXZRx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213792884</pqid></control><display><type>article</type><title>Bayesian Computations for Random Environment Models</title><source>EBSCOhost Business Source Ultimate</source><source>Taylor and Francis Science and Technology Collection</source><creator>Al-Mutairi, D. K.</creator><creatorcontrib>Al-Mutairi, D. K.</creatorcontrib><description>This paper deals with the analysis of reliability data from a Bayesian perspective for Random Environment (RE) models. We give an overview of current literature on RE models. We also study the computational problems associated with the implementations of RE models in a Bayesian setting. Then, we present the Markov Chain Monte Carlo technique to solve such problems. These problems arise in posterior and predictive analysis and their relevant quantities such as mean, variance, and median. The suggested methodology is incorporated with an illustration.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/1478881042000214631</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis Group</publisher><subject>Bayesian analysis ; Bayesian Computation ; Bayesian Inference ; Gibbs Sampling ; Joint Prior Distribution ; Markov analysis ; Random Environment</subject><ispartof>Journal of applied statistics, 2004-07, Vol.31 (6), p.645-659</ispartof><rights>Copyright Taylor & Francis Group, LLC 2004</rights><rights>Copyright Carfax Publishing Company Jul 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/tafjapsta/v_3a31_3ay_3a2004_3ai_3a6_3ap_3a645-659.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Mutairi, D. K.</creatorcontrib><title>Bayesian Computations for Random Environment Models</title><title>Journal of applied statistics</title><description>This paper deals with the analysis of reliability data from a Bayesian perspective for Random Environment (RE) models. We give an overview of current literature on RE models. We also study the computational problems associated with the implementations of RE models in a Bayesian setting. Then, we present the Markov Chain Monte Carlo technique to solve such problems. These problems arise in posterior and predictive analysis and their relevant quantities such as mean, variance, and median. The suggested methodology is incorporated with an illustration.</description><subject>Bayesian analysis</subject><subject>Bayesian Computation</subject><subject>Bayesian Inference</subject><subject>Gibbs Sampling</subject><subject>Joint Prior Distribution</subject><subject>Markov analysis</subject><subject>Random Environment</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PGzEUxC1EJQLlE3BZcV9q-6299gUJIvpPqZAqOFsva6_YKGsvtpOSb1-nQZxQOYznMvPz0xBywegVo4p-YU2rlGK04ZRSzhoJ7IjMGEhaUwH8mMwol7JuWgkn5DSlVYkpJmBG4BZ3Lg3oq3kYp03GPASfqj7E6jd6G8bqzm-HGPzofK5-BevW6TP51OM6ufNXPyOPX-8e5t_rxf23H_ObRd2BlrnWrJWctl0rOwdoOXYA2lomhJCKCs2XaBVqwfYXQ9u0VjqNS8uZ7HGpGjgjlwfuFMPzxqVsVmETffnScAat5upfCA6hLoaUouvNFIcR484wavbjmHfGKa2fh1Z0k-veKhn7FU4po9kaQGDl2RWVYlNsKJJF094bYaTQ5imPBXZ9gA2-7DbinxDXtrB26xD7iL4bkoH_X6M_BLzTM_klw18WXZRx</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Al-Mutairi, D. K.</creator><general>Taylor & Francis Group</general><general>Taylor and Francis Journals</general><general>Taylor & Francis Ltd</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040701</creationdate><title>Bayesian Computations for Random Environment Models</title><author>Al-Mutairi, D. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-9176207c76ce3ad2ac339dd1555680592bad8a95102143747d6e9abd216fab843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bayesian analysis</topic><topic>Bayesian Computation</topic><topic>Bayesian Inference</topic><topic>Gibbs Sampling</topic><topic>Joint Prior Distribution</topic><topic>Markov analysis</topic><topic>Random Environment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Mutairi, D. K.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Mutairi, D. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Computations for Random Environment Models</atitle><jtitle>Journal of applied statistics</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>31</volume><issue>6</issue><spage>645</spage><epage>659</epage><pages>645-659</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>This paper deals with the analysis of reliability data from a Bayesian perspective for Random Environment (RE) models. We give an overview of current literature on RE models. We also study the computational problems associated with the implementations of RE models in a Bayesian setting. Then, we present the Markov Chain Monte Carlo technique to solve such problems. These problems arise in posterior and predictive analysis and their relevant quantities such as mean, variance, and median. The suggested methodology is incorporated with an illustration.</abstract><cop>Abingdon</cop><pub>Taylor & Francis Group</pub><doi>10.1080/1478881042000214631</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4763 |
ispartof | Journal of applied statistics, 2004-07, Vol.31 (6), p.645-659 |
issn | 0266-4763 1360-0532 |
language | eng |
recordid | cdi_proquest_journals_213792884 |
source | EBSCOhost Business Source Ultimate; Taylor and Francis Science and Technology Collection |
subjects | Bayesian analysis Bayesian Computation Bayesian Inference Gibbs Sampling Joint Prior Distribution Markov analysis Random Environment |
title | Bayesian Computations for Random Environment Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_repec&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Computations%20for%20Random%20Environment%20Models&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Al-Mutairi,%20D.%20K.&rft.date=2004-07-01&rft.volume=31&rft.issue=6&rft.spage=645&rft.epage=659&rft.pages=645-659&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/1478881042000214631&rft_dat=%3Cproquest_repec%3E816886911%3C/proquest_repec%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-9176207c76ce3ad2ac339dd1555680592bad8a95102143747d6e9abd216fab843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213792884&rft_id=info:pmid/&rfr_iscdi=true |