Loading…
Electronic transport and Klein tunneling in gapped AA-stacked bilayer graphene
We theoretically investigate the electronic transport and Klein tunneling in AA-stacked bilayer graphene (AA-BLG) encapsulated by dielectric materials. Using the four-band continuum model, we evaluate the transmission and reflection probabilities along with the respective conductances. We find that...
Saved in:
Published in: | Journal of applied physics 2018-11, Vol.124 (20) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We theoretically investigate the electronic transport and Klein tunneling in AA-stacked bilayer graphene (AA-BLG) encapsulated by dielectric materials. Using the four-band continuum model, we evaluate the transmission and reflection probabilities along with the respective conductances. We find that the interlayer mass-term difference induced by the dielectric materials opens a gap in the energy spectrum and couples the upper and lower Dirac cones in AA-BLG. This cone coupling induces an inter-cone transport that is asymmetric with respect to the normal incidence in the presence of the asymmetric mass-term. The energy spectrum of the gapped AA-BLG exhibits electron-hole asymmetry that is reflected in the associated intra- and inter-cone transport channels. We also find that even though Klein tunneling exists in gated and biased AA-BLG, it is precluded by the interlayer mass-term difference and instead Fabry-PĂ©rot resonances appear. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5052402 |