Loading…

Metabotropic glutamate and GABAB receptors contribute to the modulation of glucose-stimulated insulin secretion in pancreatic beta cells

The neurotransmitters glutamate and gamma-aminobutyric acid (GABA) could participate in the regulation of the endocrine functions of islets of Langerhans. We investigated the role of the metabotropic glutamate (mGluRs) and GABA(B) (GABA(B)Rs) receptors in this process. We studied the expression of m...

Full description

Saved in:
Bibliographic Details
Published in:Diabetologia 2002-02, Vol.45 (2), p.242-252
Main Authors: BRICE, N. L, VARADI, A, ASHCROFT, S. J. H, MOLNAR, E
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The neurotransmitters glutamate and gamma-aminobutyric acid (GABA) could participate in the regulation of the endocrine functions of islets of Langerhans. We investigated the role of the metabotropic glutamate (mGluRs) and GABA(B) (GABA(B)Rs) receptors in this process. We studied the expression of mGluRs and GABA(B)Rs in rat and human islets of Langerhans and in pancreatic alpha-cell and beta-cell lines using RT-PCR and immunoblot analysis. Effects of mGluR and GABA(B) R agonists on insulin secretion were determined by radioimmunoassays and enzyme-linked immunoadsorbent assays (ELISAs). We detected mGluR3 and mGluR5 (but not mGluR1, 6 and 7) mRNAs in all of the samples examined. Trace amount of mGluR2 was found in MIN6 beta cells; mGluR4 was identified in rat islets; and mGluR8 expression was detected in rat islets, RINm5F and MIN6 cells. GABA(B)R1 a/b and 2 mRNAs were identified in islets of Langerhans and MIN6 cells. The expression of mGluR3, mGluR5, GABA(B)R1 a/b and GABA(B)R2 proteins was confirmed using specific antibodies. Group I (mGluR1/5) and group II (mGluR2/3) specific mGluR agonists increased the release of insulin in the presence of 3 to 10 mmol/l or 3 to 25 mmol/l glucose, respectively, whereas a group III (mGluR4/6-8) specific agonist inhibited insulin release at high (10-25 mmol/l) glucose concentrations. Baclofen, a GABA(B)R agonist, also inhibited the release of insulin but only in the presence of 25 mmol/l glucose. These data suggest that mGluRs and GABA(B)Rs play a role in the regulation of the endocrine pancreas with mechanisms probably involving direct activation or inhibition of voltage dependent Ca(2+)-channels, cAMP generation and G-protein-mediated modulation of K(ATP) channels.
ISSN:0012-186X
1432-0428
DOI:10.1007/s00125-001-0750-0