Loading…
Glucagon-like peptide-1 protects beta cells from cytokine-induced apoptosis and necrosis: role of protein kinase B
The gut hormone glucagon-like peptide-1 (GLP-1) decreases beta cell apoptosis in a protein kinase B (PKB)-dependent fashion, and increases islet cell mass and function in vivo. In contrast, cytokines induce beta cell apoptosis, leading to decreased islet mass and type 1 diabetes. In the present stud...
Saved in:
Published in: | Diabetologia 2005-07, Vol.48 (7), p.1339 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The gut hormone glucagon-like peptide-1 (GLP-1) decreases beta cell apoptosis in a protein kinase B (PKB)-dependent fashion, and increases islet cell mass and function in vivo. In contrast, cytokines induce beta cell apoptosis, leading to decreased islet mass and type 1 diabetes. In the present study we used rat INS-1E beta cells and primary rat islet cells to examine the potential role of PKB as a mediator of the effect of GLP-1 on cytokine-induced apoptosis.
Cell viability was determined by MTT assay, and apoptosis and necrosis by Hoechst 33342-propidium iodide staining. Immunoblot analysis was used to detect changes in protein expression, including active (phosphorylated) and total PKB, phosphorylated and total glycogen synthase kinase-3beta, activated caspase-3 and inducible nitric oxide synthase. Reactive oxygen species were determined by 1,7-dichlorofluorescein (DCF) analysis, and mutant forms of PKB were introduced into cells using adenoviral vectors.
Incubation of INS-1E cells with cytokines (IL-1beta, TNF-alpha and interferon-gamma; 10-50 ng/ml) for 18 h significantly decreased cell viability (by 44%, p |
---|---|
ISSN: | 0012-186X 1432-0428 |
DOI: | 10.1007/s00125-005-1787-2 |