Loading…
Copy-move forgery detection using combined features and transitive matching
Recently, the research of Internet of Things (IoT) and Multimedia Big Data (MBD) has been growing tremendously. Both IoT and MBD have a lot of multimedia data, which can be tampered easily. Therefore, the research of multimedia forensics is necessary. Copy-move is an important branch of multimedia f...
Saved in:
Published in: | Multimedia tools and applications 2019-11, Vol.78 (21), p.30081-30096 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-6df9469d57db464ebf4cfe44d325ba8cffa614404ee0e96378014360511e18af3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-6df9469d57db464ebf4cfe44d325ba8cffa614404ee0e96378014360511e18af3 |
container_end_page | 30096 |
container_issue | 21 |
container_start_page | 30081 |
container_title | Multimedia tools and applications |
container_volume | 78 |
creator | Lin, Cong Lu, Wei Huang, Xinchao Liu, Ke Sun, Wei Lin, Hanhui Tan, Zhiyuan |
description | Recently, the research of Internet of Things (IoT) and Multimedia Big Data (MBD) has been growing tremendously. Both IoT and MBD have a lot of multimedia data, which can be tampered easily. Therefore, the research of multimedia forensics is necessary. Copy-move is an important branch of multimedia forensics. In this paper, a novel copy-move forgery detection scheme using combined features and transitive matching is proposed. First, SIFT and LIOP are extracted as combined features from the input image. Second, transitive matching is used to improve the matching relationship. Third, a filtering approach using image segmentation is proposed to filter out false matches. Fourth, affine transformations are estimated between these image patches. Finally, duplicated regions are located based on those affine transformations. The experimental results demonstrate that the proposed scheme can achieve much better detection results on the public database under various attacks. |
doi_str_mv | 10.1007/s11042-018-6922-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2138907975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2138907975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6df9469d57db464ebf4cfe44d325ba8cffa614404ee0e96378014360511e18af3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9GZNE3aoyx-4YIXPYe0naxdbLMmWWH_vZEKnjzNHN7nHeZh7BLhGgH0TUQEKThgzVUjBJdHbIGVLrnWAo_zXtbAdQV4ys5i3AKgqoRcsOeV3x346L-ocD5sKByKnhJ1afBTsY_DtCk6P7bDRH3hyKZ9oFjYqS9SsFMc0pDB0abuPSfP2YmzH5EufueSvd3fva4e-frl4Wl1u-ZdiSpx1btGqqavdN9KJal1snMkZV-KqrV155xVKCVIIqBGlboGlKWCCpGwtq5csqu5dxf8555iMlu_D1M-aUT-swHd6CqncE51wccYyJldGEYbDgbB_DgzszOTnZkfZ0ZmRsxMzNkp2_hr_h_6Bglybxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138907975</pqid></control><display><type>article</type><title>Copy-move forgery detection using combined features and transitive matching</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Lin, Cong ; Lu, Wei ; Huang, Xinchao ; Liu, Ke ; Sun, Wei ; Lin, Hanhui ; Tan, Zhiyuan</creator><creatorcontrib>Lin, Cong ; Lu, Wei ; Huang, Xinchao ; Liu, Ke ; Sun, Wei ; Lin, Hanhui ; Tan, Zhiyuan</creatorcontrib><description>Recently, the research of Internet of Things (IoT) and Multimedia Big Data (MBD) has been growing tremendously. Both IoT and MBD have a lot of multimedia data, which can be tampered easily. Therefore, the research of multimedia forensics is necessary. Copy-move is an important branch of multimedia forensics. In this paper, a novel copy-move forgery detection scheme using combined features and transitive matching is proposed. First, SIFT and LIOP are extracted as combined features from the input image. Second, transitive matching is used to improve the matching relationship. Third, a filtering approach using image segmentation is proposed to filter out false matches. Fourth, affine transformations are estimated between these image patches. Finally, duplicated regions are located based on those affine transformations. The experimental results demonstrate that the proposed scheme can achieve much better detection results on the public database under various attacks.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-018-6922-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Affine transformations ; Computer Communication Networks ; Computer Science ; Data management ; Data Structures and Information Theory ; Feature extraction ; Filtration ; Forensic computing ; Forensic sciences ; Forgery ; Image filters ; Image segmentation ; Internet of Things ; Matching ; Multimedia ; Multimedia Information Systems ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2019-11, Vol.78 (21), p.30081-30096</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6df9469d57db464ebf4cfe44d325ba8cffa614404ee0e96378014360511e18af3</citedby><cites>FETCH-LOGICAL-c316t-6df9469d57db464ebf4cfe44d325ba8cffa614404ee0e96378014360511e18af3</cites><orcidid>0000-0002-4068-1766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2138907975/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2138907975?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Lin, Cong</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Huang, Xinchao</creatorcontrib><creatorcontrib>Liu, Ke</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Lin, Hanhui</creatorcontrib><creatorcontrib>Tan, Zhiyuan</creatorcontrib><title>Copy-move forgery detection using combined features and transitive matching</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Recently, the research of Internet of Things (IoT) and Multimedia Big Data (MBD) has been growing tremendously. Both IoT and MBD have a lot of multimedia data, which can be tampered easily. Therefore, the research of multimedia forensics is necessary. Copy-move is an important branch of multimedia forensics. In this paper, a novel copy-move forgery detection scheme using combined features and transitive matching is proposed. First, SIFT and LIOP are extracted as combined features from the input image. Second, transitive matching is used to improve the matching relationship. Third, a filtering approach using image segmentation is proposed to filter out false matches. Fourth, affine transformations are estimated between these image patches. Finally, duplicated regions are located based on those affine transformations. The experimental results demonstrate that the proposed scheme can achieve much better detection results on the public database under various attacks.</description><subject>Affine transformations</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data management</subject><subject>Data Structures and Information Theory</subject><subject>Feature extraction</subject><subject>Filtration</subject><subject>Forensic computing</subject><subject>Forensic sciences</subject><subject>Forgery</subject><subject>Image filters</subject><subject>Image segmentation</subject><subject>Internet of Things</subject><subject>Matching</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9GZNE3aoyx-4YIXPYe0naxdbLMmWWH_vZEKnjzNHN7nHeZh7BLhGgH0TUQEKThgzVUjBJdHbIGVLrnWAo_zXtbAdQV4ys5i3AKgqoRcsOeV3x346L-ocD5sKByKnhJ1afBTsY_DtCk6P7bDRH3hyKZ9oFjYqS9SsFMc0pDB0abuPSfP2YmzH5EufueSvd3fva4e-frl4Wl1u-ZdiSpx1btGqqavdN9KJal1snMkZV-KqrV155xVKCVIIqBGlboGlKWCCpGwtq5csqu5dxf8555iMlu_D1M-aUT-swHd6CqncE51wccYyJldGEYbDgbB_DgzszOTnZkfZ0ZmRsxMzNkp2_hr_h_6Bglybxk</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Lin, Cong</creator><creator>Lu, Wei</creator><creator>Huang, Xinchao</creator><creator>Liu, Ke</creator><creator>Sun, Wei</creator><creator>Lin, Hanhui</creator><creator>Tan, Zhiyuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4068-1766</orcidid></search><sort><creationdate>20191101</creationdate><title>Copy-move forgery detection using combined features and transitive matching</title><author>Lin, Cong ; Lu, Wei ; Huang, Xinchao ; Liu, Ke ; Sun, Wei ; Lin, Hanhui ; Tan, Zhiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6df9469d57db464ebf4cfe44d325ba8cffa614404ee0e96378014360511e18af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Affine transformations</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data management</topic><topic>Data Structures and Information Theory</topic><topic>Feature extraction</topic><topic>Filtration</topic><topic>Forensic computing</topic><topic>Forensic sciences</topic><topic>Forgery</topic><topic>Image filters</topic><topic>Image segmentation</topic><topic>Internet of Things</topic><topic>Matching</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Cong</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Huang, Xinchao</creatorcontrib><creatorcontrib>Liu, Ke</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Lin, Hanhui</creatorcontrib><creatorcontrib>Tan, Zhiyuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Cong</au><au>Lu, Wei</au><au>Huang, Xinchao</au><au>Liu, Ke</au><au>Sun, Wei</au><au>Lin, Hanhui</au><au>Tan, Zhiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copy-move forgery detection using combined features and transitive matching</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>78</volume><issue>21</issue><spage>30081</spage><epage>30096</epage><pages>30081-30096</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Recently, the research of Internet of Things (IoT) and Multimedia Big Data (MBD) has been growing tremendously. Both IoT and MBD have a lot of multimedia data, which can be tampered easily. Therefore, the research of multimedia forensics is necessary. Copy-move is an important branch of multimedia forensics. In this paper, a novel copy-move forgery detection scheme using combined features and transitive matching is proposed. First, SIFT and LIOP are extracted as combined features from the input image. Second, transitive matching is used to improve the matching relationship. Third, a filtering approach using image segmentation is proposed to filter out false matches. Fourth, affine transformations are estimated between these image patches. Finally, duplicated regions are located based on those affine transformations. The experimental results demonstrate that the proposed scheme can achieve much better detection results on the public database under various attacks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-018-6922-4</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4068-1766</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2019-11, Vol.78 (21), p.30081-30096 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2138907975 |
source | ABI/INFORM Global; Springer Nature |
subjects | Affine transformations Computer Communication Networks Computer Science Data management Data Structures and Information Theory Feature extraction Filtration Forensic computing Forensic sciences Forgery Image filters Image segmentation Internet of Things Matching Multimedia Multimedia Information Systems Special Purpose and Application-Based Systems |
title | Copy-move forgery detection using combined features and transitive matching |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copy-move%20forgery%20detection%20using%20combined%20features%20and%20transitive%20matching&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Lin,%20Cong&rft.date=2019-11-01&rft.volume=78&rft.issue=21&rft.spage=30081&rft.epage=30096&rft.pages=30081-30096&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-018-6922-4&rft_dat=%3Cproquest_cross%3E2138907975%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-6df9469d57db464ebf4cfe44d325ba8cffa614404ee0e96378014360511e18af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2138907975&rft_id=info:pmid/&rfr_iscdi=true |