Loading…
Host load prediction with long short-term memory in cloud computing
Host load prediction is significant for improving resource allocation and utilization in cloud computing. Due to the higher variance than that in a grid, accurate prediction remains a challenge in the cloud system. In this paper, we apply a concise yet adaptive and powerful model called long short-t...
Saved in:
Published in: | The Journal of supercomputing 2018-12, Vol.74 (12), p.6554-6568 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Host load prediction is significant for improving resource allocation and utilization in cloud computing. Due to the higher variance than that in a grid, accurate prediction remains a challenge in the cloud system. In this paper, we apply a concise yet adaptive and powerful model called long short-term memory to predict the mean load over consecutive future time intervals and actual load multi-step-ahead. Two real-world load traces were used to evaluate the performance. One is the load trace in the Google data center, and the other is that in a traditional distributed system. The experiment results show that our proposed method achieves state-of-the-art performance with higher accuracy in both datasets. |
---|---|
ISSN: | 0920-8542 1573-0484 |
DOI: | 10.1007/s11227-017-2044-4 |