Loading…

Possible isolation number of a matrix over nonnegative integers

Let ℤ + be the semiring of all nonnegative integers and A an m × n matrix over ℤ + . The rank of A is the smallest k such that A can be factored as an m × k matrix times a k × n matrix. The isolation number of A is the maximum number of nonzero entries in A such that no two are in any row or any col...

Full description

Saved in:
Bibliographic Details
Published in:Czechoslovak mathematical journal 2018-12, Vol.68 (4), p.1055-1066
Main Authors: Beasley, LeRoy B., Jun, Young Bae, Song, Seok-Zun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c311t-a05a16eec66b73e840363f0fd31c9276c5200aea3e4ec89c1e747b9c6c5fa3de3
container_end_page 1066
container_issue 4
container_start_page 1055
container_title Czechoslovak mathematical journal
container_volume 68
creator Beasley, LeRoy B.
Jun, Young Bae
Song, Seok-Zun
description Let ℤ + be the semiring of all nonnegative integers and A an m × n matrix over ℤ + . The rank of A is the smallest k such that A can be factored as an m × k matrix times a k × n matrix. The isolation number of A is the maximum number of nonzero entries in A such that no two are in any row or any column, and no two are in a 2 × 2 submatrix of all nonzero entries. We have that the isolation number of A is a lower bound of the rank of A . For A with isolation number k , we investigate the possible values of the rank of A and the Boolean rank of the support of A . So we obtain that the isolation number and the Boolean rank of the support of a given matrix are the same if and only if the isolation number is 1 or 2 only. We also determine a special type of m × n matrices whose isolation number is m . That is, those matrices are permutationally equivalent to a matrix A whose support contains a submatrix of a sum of the identity matrix and a tournament matrix.
doi_str_mv 10.21136/CMJ.2018.0068-17
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2140595669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2140595669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-a05a16eec66b73e840363f0fd31c9276c5200aea3e4ec89c1e747b9c6c5fa3de3</originalsourceid><addsrcrecordid>eNpFkMFKAzEQhoMoWKsP4G3B864zSTbZPYkUrUpFD3oO2XS2bNkmdbMtPr6pFTwNzHzM__Mxdo1QcEShbmevLwUHrAoAVeWoT9gES83zGiWesgkAYi6V5OfsIsY1AAiU1YTdvYcYu6anrIuht2MXfOZ3m4aGLLSZzTZ2HLrvLOzTwgfvaZWYfaL9SCsa4iU7a20f6epvTtnn48PH7ClfvM2fZ_eL3AnEMbdQWlRETqlGC6okCCVaaJcCXc21ciUHsGQFSXJV7ZC01E3t0qG1Ykliym6Of7dD-NpRHM067AafIg1HCWVdKlUnih-puB06n_r9UwjmV5RJosxBlDmIMqjFD5zYW6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2140595669</pqid></control><display><type>article</type><title>Possible isolation number of a matrix over nonnegative integers</title><source>Springer Nature</source><creator>Beasley, LeRoy B. ; Jun, Young Bae ; Song, Seok-Zun</creator><creatorcontrib>Beasley, LeRoy B. ; Jun, Young Bae ; Song, Seok-Zun</creatorcontrib><description>Let ℤ + be the semiring of all nonnegative integers and A an m × n matrix over ℤ + . The rank of A is the smallest k such that A can be factored as an m × k matrix times a k × n matrix. The isolation number of A is the maximum number of nonzero entries in A such that no two are in any row or any column, and no two are in a 2 × 2 submatrix of all nonzero entries. We have that the isolation number of A is a lower bound of the rank of A . For A with isolation number k , we investigate the possible values of the rank of A and the Boolean rank of the support of A . So we obtain that the isolation number and the Boolean rank of the support of a given matrix are the same if and only if the isolation number is 1 or 2 only. We also determine a special type of m × n matrices whose isolation number is m . That is, those matrices are permutationally equivalent to a matrix A whose support contains a submatrix of a sum of the identity matrix and a tournament matrix.</description><identifier>ISSN: 0011-4642</identifier><identifier>EISSN: 1572-9141</identifier><identifier>DOI: 10.21136/CMJ.2018.0068-17</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Boolean algebra ; Convex and Discrete Geometry ; Integers ; Lower bounds ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations</subject><ispartof>Czechoslovak mathematical journal, 2018-12, Vol.68 (4), p.1055-1066</ispartof><rights>Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-a05a16eec66b73e840363f0fd31c9276c5200aea3e4ec89c1e747b9c6c5fa3de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Beasley, LeRoy B.</creatorcontrib><creatorcontrib>Jun, Young Bae</creatorcontrib><creatorcontrib>Song, Seok-Zun</creatorcontrib><title>Possible isolation number of a matrix over nonnegative integers</title><title>Czechoslovak mathematical journal</title><addtitle>Czech Math J</addtitle><description>Let ℤ + be the semiring of all nonnegative integers and A an m × n matrix over ℤ + . The rank of A is the smallest k such that A can be factored as an m × k matrix times a k × n matrix. The isolation number of A is the maximum number of nonzero entries in A such that no two are in any row or any column, and no two are in a 2 × 2 submatrix of all nonzero entries. We have that the isolation number of A is a lower bound of the rank of A . For A with isolation number k , we investigate the possible values of the rank of A and the Boolean rank of the support of A . So we obtain that the isolation number and the Boolean rank of the support of a given matrix are the same if and only if the isolation number is 1 or 2 only. We also determine a special type of m × n matrices whose isolation number is m . That is, those matrices are permutationally equivalent to a matrix A whose support contains a submatrix of a sum of the identity matrix and a tournament matrix.</description><subject>Analysis</subject><subject>Boolean algebra</subject><subject>Convex and Discrete Geometry</subject><subject>Integers</subject><subject>Lower bounds</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><issn>0011-4642</issn><issn>1572-9141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkMFKAzEQhoMoWKsP4G3B864zSTbZPYkUrUpFD3oO2XS2bNkmdbMtPr6pFTwNzHzM__Mxdo1QcEShbmevLwUHrAoAVeWoT9gES83zGiWesgkAYi6V5OfsIsY1AAiU1YTdvYcYu6anrIuht2MXfOZ3m4aGLLSZzTZ2HLrvLOzTwgfvaZWYfaL9SCsa4iU7a20f6epvTtnn48PH7ClfvM2fZ_eL3AnEMbdQWlRETqlGC6okCCVaaJcCXc21ciUHsGQFSXJV7ZC01E3t0qG1Ykliym6Of7dD-NpRHM067AafIg1HCWVdKlUnih-puB06n_r9UwjmV5RJosxBlDmIMqjFD5zYW6E</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Beasley, LeRoy B.</creator><creator>Jun, Young Bae</creator><creator>Song, Seok-Zun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20181201</creationdate><title>Possible isolation number of a matrix over nonnegative integers</title><author>Beasley, LeRoy B. ; Jun, Young Bae ; Song, Seok-Zun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-a05a16eec66b73e840363f0fd31c9276c5200aea3e4ec89c1e747b9c6c5fa3de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Boolean algebra</topic><topic>Convex and Discrete Geometry</topic><topic>Integers</topic><topic>Lower bounds</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beasley, LeRoy B.</creatorcontrib><creatorcontrib>Jun, Young Bae</creatorcontrib><creatorcontrib>Song, Seok-Zun</creatorcontrib><jtitle>Czechoslovak mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beasley, LeRoy B.</au><au>Jun, Young Bae</au><au>Song, Seok-Zun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Possible isolation number of a matrix over nonnegative integers</atitle><jtitle>Czechoslovak mathematical journal</jtitle><stitle>Czech Math J</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>68</volume><issue>4</issue><spage>1055</spage><epage>1066</epage><pages>1055-1066</pages><issn>0011-4642</issn><eissn>1572-9141</eissn><abstract>Let ℤ + be the semiring of all nonnegative integers and A an m × n matrix over ℤ + . The rank of A is the smallest k such that A can be factored as an m × k matrix times a k × n matrix. The isolation number of A is the maximum number of nonzero entries in A such that no two are in any row or any column, and no two are in a 2 × 2 submatrix of all nonzero entries. We have that the isolation number of A is a lower bound of the rank of A . For A with isolation number k , we investigate the possible values of the rank of A and the Boolean rank of the support of A . So we obtain that the isolation number and the Boolean rank of the support of a given matrix are the same if and only if the isolation number is 1 or 2 only. We also determine a special type of m × n matrices whose isolation number is m . That is, those matrices are permutationally equivalent to a matrix A whose support contains a submatrix of a sum of the identity matrix and a tournament matrix.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/CMJ.2018.0068-17</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0011-4642
ispartof Czechoslovak mathematical journal, 2018-12, Vol.68 (4), p.1055-1066
issn 0011-4642
1572-9141
language eng
recordid cdi_proquest_journals_2140595669
source Springer Nature
subjects Analysis
Boolean algebra
Convex and Discrete Geometry
Integers
Lower bounds
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
title Possible isolation number of a matrix over nonnegative integers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Possible%20isolation%20number%20of%20a%20matrix%20over%20nonnegative%20integers&rft.jtitle=Czechoslovak%20mathematical%20journal&rft.au=Beasley,%20LeRoy%20B.&rft.date=2018-12-01&rft.volume=68&rft.issue=4&rft.spage=1055&rft.epage=1066&rft.pages=1055-1066&rft.issn=0011-4642&rft.eissn=1572-9141&rft_id=info:doi/10.21136/CMJ.2018.0068-17&rft_dat=%3Cproquest_sprin%3E2140595669%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-a05a16eec66b73e840363f0fd31c9276c5200aea3e4ec89c1e747b9c6c5fa3de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2140595669&rft_id=info:pmid/&rfr_iscdi=true